首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是以2π为周期的二阶可导函数,满足关系式f(x)+2f’(x+π)=sinx,求f(x).
设f(x)是以2π为周期的二阶可导函数,满足关系式f(x)+2f’(x+π)=sinx,求f(x).
admin
2021-08-05
77
问题
设f(x)是以2π为周期的二阶可导函数,满足关系式f(x)+2f’(x+π)=sinx,求f(x).
选项
答案
若f(x)为可导的周期函数,则f’(x)亦为周期函数,且周期不变,于是f’(x+2π)=f’(x).于是根据 f(x+π)+2f’(x+2π)=sin(x+π), 有 f(x+π)+2f’(π)=一sinx, 两边对x求导,得 f’(x+π)+2f”(x)=一cosx. 与题设关系式联立,消去f’(x+π),得 4f”(x)—f(x)=一sinx一2cosx, (*) 对于4f”(x)一f(x)=0,即f”(x)—[*]f(x)=0,特征方程为r
2
一[*]=0,得r
1,2
=±1/2,故对应齐次方程的通解为[*] 设非齐次方程(*)的特解为y
*
(x)=acosx+6sinx代入方程得a=2/5,b=1/5,故非齐次方程的通解为 [*] 因为f(x+2π)=f(x),故 [*] 于是C
1
=C
2
=0,所以[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/8Py4777K
0
考研数学二
相关试题推荐
已知α1,α2,α3,α4是三维非零列向量,则下列结论①若α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②若α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③若r(α1,α1+α2,α2+α3)=r
微分方程y"一4y’+4y=x2+8e2x的一个特解应具有形式(其中a,b,c,d为常数)()
设A为4阶实对称矩阵,且A2+A=0.若A的秩为3,则A相似于
设函数y=f(x)具有二阶导数,且f’(x)>0,f’’(x)>0,△x为自变量x在点x0,处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
函数在[一π,π]上的第一类间断点是x=()
设f(x)为不恒等于零的奇函数,且f’(0)存在,则函数
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y’’+p(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是()
方程y’sinx=ylny满足条件=e的特解是
随机试题
A.血间接胆红素增高、贫血、网织红细胞增高B.血间接胆红素增高、贫血、网织红细胞正常或减低C.血间接胆红素增高、无贫血、网织红细胞正常D.血间接胆红素正常、贫血、网织红细胞减低E.血间接胆红素正常、贫血、网织红细胞正常符合MDS的是
A、毛果芸香碱B、阿托品C、卡巴胆碱D、美卡拉明E、毒扁豆碱M受体阻断药
急性胆囊炎感染的主要途径是
扩大客户量,提高交易量,(),在适当的时候提供恰当的信息,以增加客户或其朋友对销售人员的信任。
社会救助是社会保障体系的核心。()
实验室使用浓度为2%的盐水和蒸馏水,配制浓度为1%的淡盐水。现在有1000克蒸馏水和500克浓度为2%的盐水,则最多可配制()克浓度为1%的淡盐水。
设函数y=f(x)由方程xy+2Inx=y4所确定,则曲线y=f(x)在(1,1)处的法线方程为__________。
Despiteyourbestintentionsandefforts,itis【B1】______:Atsomepointinyourlife,youwillbewrong.【B2】_______canbehar
RobertaGordonneverthoughtshe’dstillbealiveatage76.Shedefinitelydidn’tthinkshe’dstillbeworking.ButeverySatur
有如下类定义和变量定义:classA{public:A(){data=0;}~A(){}intGetData()const{ret
最新回复
(
0
)