首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
admin
2019-08-12
64
问题
设η
1
,η
2
,η
3
,η
4
是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
选项
A、η
1
一η
2
,η
2
+η
3
,η
3
一η
4
,η
4
+η
1
。
B、η
1
+η
2
,η
2
+η
3
+η
4
,η
1
一η
2
+η
3
。
C、η
1
+η
2
,η
2
+η
3
,η
3
+η
4
,η
4
+η
1
。
D、η
1
+η
2
,η
2
一η
3
,η
3
+η
4
,η
4
+η
1
。
答案
D
解析
由已知条件知Ax=0的基础解系由四个线性无关的解向量所构成。选项B中仅三个解向量,个数不合要求,故排除B项。选项A和C中,都有四个解向量,但因为(η
1
-η
2
)+(η
2
+η
3
)一(η
2
一η
4
)一(η
4
+η
1
)=0,(η
1
+η
2
)一(η
2
+η
3
)+(η
3
+η
4
)一(η
4
+η
1
)=0说明选项A、C中的解向量组均线性相关,因而排除A项和C项。用排除法可知选D。或者直接地,由(η
1
+η
2
,η
2
一η
3
,η
3
+η
4
,η
4
+η
1
)=(η
1
,η
2
,η
3
,η
4
)
因为
知η
1
+η
2
,η
2
一η
2
,η
3
+η
4
,η
4
+η
1
线性无关,又因η
1
+η
2
,η
2
一η
3
,η
3
+η
4
,η
4
+η
1
均是Ax=0的解,且解向量个数为4,所以选D。
转载请注明原文地址:https://kaotiyun.com/show/EeN4777K
0
考研数学二
相关试题推荐
求极限
求微分方程y’+ycosx=(lnx)e-sinx的通解.
设,B=U-1A*U.求B+2E的特征值和特征向量.
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内g(x)≠0;(2)在开区间(a,b)内至少存在一点ξ,使.
已知三角形的周长为2p,将它绕其一边旋转而构成一立体,求使立体体积最大的那个三角形.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组AX=β的通解.
计算积分:
判别积分的敛散性.
求极限:
假设λ为n阶可逆矩阵A的一个特征值,证明:为A-1的特征值;
随机试题
撤销党内职务处分,是指撤销受处分党员由党内选举或者组织任命的党内各种职务。()
在氯碱生产三效四体二段蒸发工序中,一效二次蒸汽送往二效加热室,二效二次蒸汽送往三效加热室,三效二次蒸汽送往四效加热室。()
HaveyoueverwatchedahomeshoppingprogramonTV?Canyoudescribe【C1】______it’sliketoshopathomebytelevision?Haveyo
根据降血糖作用机制,阿卡波糖属于
小儿肺的呼吸功能,下列哪项不正确
下列各项中,会引起应收账款账面价值发生增减变动的有()。
【2015年安徽.判断】教材是教学活动可以利用的唯一资源。()
下列名言与作者的对应关系不正确的一项是()。
Alotofpeoplebelievethattelevisionhasaharmfuleffectonchildren.Afewyearsago,thesamecriticismsweremadeofthe
Politicalinstitutionsdevelopwhenthecomplexityofthesocietyreachesthepointatwhichkinshiporganizationcannolonger
最新回复
(
0
)