首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2002年)设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
(2002年)设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
admin
2018-06-30
56
问题
(2002年)设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
选项
答案
解1 由题设条件知 [*] 由于f(0)≠0,则a+b一1=0 由洛必达法则知 [*] 又f(0)≠0,则a+2b=0,于是a=2,b=一1. 解2 由题设可知 f(h)=f(0)+f’(0)h+o(h) f(2h)=f(0)+2f’(0)h+o(h) 所以,af(h)+by(2h)一f(0)=(a+b一1)f(0)+(a+2b)f’(0)h+o(h) 因此,当a+b-1=0,且a+2b=0时 af(h)+bf(2h)一f(0)=o(h) 故 a=2,b=一1 △解3 由于[*] 由题设可知上式右端极限应为零,又f(0)≠0,则a+b一1=0,从而 [*] 而f’(0)≠0,则a+2b=0 由a+b一1=0及a+2b=0可知,a=2,b=一1
解析
转载请注明原文地址:https://kaotiyun.com/show/8Rg4777K
0
考研数学一
相关试题推荐
设又函数f(x)在点x=0处可导,求F(x)=f[φ(x)]的导数.
曲线在t=1处的曲率k=_______
设f(x)在区间[1,+∞)上单调减少且非负的连续函数,f(x)fx(n=1,2,…).证明:存在;
过点M(1,2,一1)且与直线垂直的平面方程是___________.
(1)取ε0=1,由[*]=0,根据极限的定义,存在N>,当n>N时,[*]收敛(收敛级数去掉有限项不改变敛散性),由比较审敛法得[*]收敛(收敛级数添加有限项不改变敛散性).(2)根据(1),当n>N时,有0≤an<bn,因为[*]发散.
令f(x)=x—[x],求极限
交换累次积分的积分顺序:I=f(x,y)dy.
(1998年)求直线L:在平面∏:x—y+2z-1=0上的投影直线L0的方程,并求L0绕y轴旋转一周所成曲面的方程。
(2015年)(I)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x);(Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求
(2000年)设有一半径为R的球体,P0是此球的表面上的一个定点,球体上任一点的密度与该点到P0距离的平方成正比(比例常数k>0),求球体的重心位置。
随机试题
患儿,女,3岁。因发热3天,咳嗽2日伴腹痛而来诊。查体:T40℃,神志清,扁桃体Ⅱ度肿大,颈软,颈部可及黄豆大淋巴结3~4枚,活动,有压痛,心肺(一),腹稍胀,质软,满腹痛,以脐周为主,无腹肌紧张和固定压痛点,血象Hb128g/L,WN28.9×109/L
阿斯匹林过量可引起哌替啶长期应用可引起
消渴病的病机特点不包括
患者,女性,白带增多,呈泡沫状,灰黄色,质稀薄,有腥臭味,外阴瘙痒伴烧热感9天。检查:阴道黏膜充血(++),有散在红色斑点。给此位患者作阴道灌洗选择的溶液应为
由国务院投资主管部门核准的项目,其项目申请报告应由具备()工程咨询资格的机构编制。
以下各种情况中,导致2015年度相关交易、事项违反分类认定的有()。
艺术流派
机关制发公文,应遵守事无巨细都要发文的原则。()
BreakfastStudiesshowthatchildrenwhoeatbreakfastdobetterinschool.Itdoesn’ttakemuchfurtherthoughttobelieve
WhichofthefollowingisDavidDebut’sideaontherelationshipbetweenpeopleandcomputers?Theunderlinedword"it"inthe
最新回复
(
0
)