首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2014年)设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上
(2014年)设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上
admin
2018-06-30
48
问题
(2014年)设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上
选项
A、当f’(x)≥0时,f(x)≥g(x)
B、当f’(x)≥0时,f(x)≤g(x)
C、当f"(x)≥0时,f(x)≥g(x)
D、当f"(x)≥0时,f(x)≤g(x)
答案
D
解析
解1 由于g(0)=f’(0),g(1)=f(1),则直线y=f(0)(1一x)+f(1)x过点(0,f(0))和(1,f(1)),当f"(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1一x)+f(1)x的下方,即
f(x)≤g(x)
故应选(D)).
解2 令F(x)=f(x)一g(x)=f(x)一f(0)(1—x)一f(1)x,则
F’(x)=f’(x)+f(0)一f(1),f"(x)=f"(x).
当f"(x)≥0时,F"(x)≥0.则曲线y=F(x)在区间[0,1]上是凹的,又F(0)=F(1)=0,
从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).
解3 令F(x)=f(x)一g(x)=f(x)一f(0)(1一x)一f(1)x,则
F(x)=f(x)[(1一x)+x]一f(0)(1一x)一f(1)x
=(1一x)[f(x)一f(0)]一x[f(1)一f(x)]
=x(1一x)f’(ξ)一x(1一x)f’(η) (ξ∈(0,x)。η∈(x,1))
=x(1一x)[f’(ξ)一f’(η)]
当f"(x)≥0时,f’(x)单调增,f’(ξ)≤f’(η).从而,当x∈[0,1]时F(x)≤0,即
f(x)≤g(x),故应选(D).
转载请注明原文地址:https://kaotiyun.com/show/kRg4777K
0
考研数学一
相关试题推荐
设f(x)=,为了使f(x)对一切z都连续,求常数a的最小正值.
计算曲面积分,其中S是由曲面x2+y2=R2及两平面z=R,z=一R(R>0)所围成立体表面的外侧.
某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg的飞机,着陆时的水平速度为700km/h经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为
设数列{an},{bn}满足,cosan一an=cosbn,且级数收敛.证明:级数收敛.
(2014年)设函数y=f(x)由方程y3+xy2+x2y+6=0确定,求f(x)的极值。
(1998年)计算其中∑为下半球面的上侧,a为大于零的常数.
(2018年)已知微分方程y’+y=f(x),其中f(x)是R上的连续函数.若f(x)是周期为T的函数,证明:方程存在唯一的以T为周期的解.
(1993年)设物体A从点(0,1)出发,以速度大小为常数v沿y轴正向运动,物体B从点(一1,0)与A同时出发,其速度大小为2v,方向始终指向A.试建立物体B的运动轨迹所满足的微分方程,并写出初始条件.
(1994年)设常数λ>0,且级数收敛,则级数
[2010年]设m,n均是正整数,则反常积分的收敛性().
随机试题
继电保护的操作电源有几种?各有何优缺点?
证明方程4χ=2χ在[0,1]上有且只有一个实根。
此时辨证属于()若治疗后仍不见好转,症见吐血,面赤舌红,心烦便秘,脉弦数有力等,治疗宜()
产权比率大,则()。
公路桥梁的桩基础的构造要求,正确的是()。
《安全生产法》中规定,除从事矿山开采、建筑施工和危险品的生产、经营、储存活动的生产经营单位外,从业人员超过()人的,应当设置安全生产管理机构或者配备专职安全生产管理人员。
十二时辰对应今天的二十四小时,其中“辰”时为“11点至13点”。()
下列情形中,学校不可以解聘教师的是()。
以下不具有Thumb一2状态的ARM处理器是()。
SafetyRulesforBike-Riding.1.Neverrideoutintoastreetwithoutstoppingfirst.2.Watchforstopsigns.3.L
最新回复
(
0
)