首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2014年)设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上
(2014年)设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上
admin
2018-06-30
84
问题
(2014年)设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上
选项
A、当f’(x)≥0时,f(x)≥g(x)
B、当f’(x)≥0时,f(x)≤g(x)
C、当f"(x)≥0时,f(x)≥g(x)
D、当f"(x)≥0时,f(x)≤g(x)
答案
D
解析
解1 由于g(0)=f’(0),g(1)=f(1),则直线y=f(0)(1一x)+f(1)x过点(0,f(0))和(1,f(1)),当f"(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1一x)+f(1)x的下方,即
f(x)≤g(x)
故应选(D)).
解2 令F(x)=f(x)一g(x)=f(x)一f(0)(1—x)一f(1)x,则
F’(x)=f’(x)+f(0)一f(1),f"(x)=f"(x).
当f"(x)≥0时,F"(x)≥0.则曲线y=F(x)在区间[0,1]上是凹的,又F(0)=F(1)=0,
从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).
解3 令F(x)=f(x)一g(x)=f(x)一f(0)(1一x)一f(1)x,则
F(x)=f(x)[(1一x)+x]一f(0)(1一x)一f(1)x
=(1一x)[f(x)一f(0)]一x[f(1)一f(x)]
=x(1一x)f’(ξ)一x(1一x)f’(η) (ξ∈(0,x)。η∈(x,1))
=x(1一x)[f’(ξ)一f’(η)]
当f"(x)≥0时,f’(x)单调增,f’(ξ)≤f’(η).从而,当x∈[0,1]时F(x)≤0,即
f(x)≤g(x),故应选(D).
转载请注明原文地址:https://kaotiyun.com/show/kRg4777K
0
考研数学一
相关试题推荐
设Ω为曲线z=1-x2-y2,z=0所围的立体,如果将三重积分f(x,y,z)dv化为先对z再对y最后对x积分,则I=_______
设X为连续型随机变量,方差存在,则对任意常数C和ε>0,必有()
已知三元二次型XTAX经正交变换化为,又知矩阵B满足矩阵方程其中α=[1,1,-1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
已知α=[a,1,1]T是矩阵A=的逆矩阵的特征向量,那么a=_______
设有一小山,取它的底面所在的平面为xOy坐标面,其底部所占的区域为D={(x,y)|x2+y2一xy≤75),小山的高度函数为h(x,y)=75一x2一y2+xy设M(x0,y0)为区域D上的一个点,问h(x,y)在该点沿平面上沿什么方向的方向导数最大
(2015年)
(2001年)设y=f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0,试证:
(1993年)设b>a>e,证明ab>ba
(2001年)求
若则a=___________,b=___________。
随机试题
简述财务类人员的职业生涯规划。
做B-D试验的注意事项有
某新生儿,诊断为单侧完全性唇裂合并单侧完全性腭裂,同时伴有鼻部畸形。腭裂的正畸治疗应开始于
实物资产清查的技术推算法适应范围广,绝大部分实物资产都可以采用这种方法进行清查。()
关于培训与开发组织体系的陈述,错误的是()。
2013年4月,吴某设立一家有限责任公司,从事绿色食品开发,注册资本为200万元。公司成立半年后,为增加产品开发力度,吴某拟新增资本100万元,并为此分别与贾某、刘某洽谈,该二人均有意愿认缴全部新增资本,加入吴某的公司。吴某遂先后与贾某、刘某二人就投资事项
侦查:调查:证据
马克思主义中国化就是把马克思主义基本原理同中国革命、建设和改革的实践结合起来,同中国的优秀历史传统和优秀文化结合起来,既坚持马克思主义,又发展马克思主义。马克思主义中国化的科学内涵包括
下列有关数据库的描述,正确的是()。
AccordingtoPrimeMinisterWenJiabao,whatwillChinado?
最新回复
(
0
)