首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Aχ=0的基础解系,且矩阵A-6E不可逆.则 (Ⅰ)求齐次线性方程组(A-6E)χ=0的通解: (Ⅱ)求正交变换χ=Qy将二次型χTAχ化为标准形;
设A为3阶实对称矩阵,α1=(1,-1,-1)T,α2=(-2,1,0)T是齐次线性方程组Aχ=0的基础解系,且矩阵A-6E不可逆.则 (Ⅰ)求齐次线性方程组(A-6E)χ=0的通解: (Ⅱ)求正交变换χ=Qy将二次型χTAχ化为标准形;
admin
2017-11-30
70
问题
设A为3阶实对称矩阵,α
1
=(1,-1,-1)
T
,α
2
=(-2,1,0)
T
是齐次线性方程组Aχ=0的基础解系,且矩阵A-6E不可逆.则
(Ⅰ)求齐次线性方程组(A-6E)χ=0的通解:
(Ⅱ)求正交变换χ=Qy将二次型χ
T
Aχ化为标准形;
(Ⅲ)求(A-3E)
100
。
选项
答案
(Ⅰ)因为矩阵A-6E不可逆,所以λ=6是矩阵A的一个特征值;另一方面,因为α
1
,α
2
是齐次线性方程组Aχ=0的基础解系,所以λ=0是矩阵A的二重特征值,所以A的特征值为0,0,6。 齐次线性方程组(A-6E)χ=0的通解是矩阵A的属于特征值λ=6的特征向量。因为A为3阶实对称矩阵,从而属于不同特征值的特征向量正交。 设α
3
=(χ
1
,χ
2
,χ
3
)
T
是矩阵A的属于特征值λ=6的一个特征向量,则 (α
1
,α
3
)=0,(α
2
,α
3
)=0, 解得α
3
=(-1,-2,1)
T
,所以齐次线性方程组(A-6E)χ=0的通解为kα
3
,k为任意常数。 (Ⅱ)下面将向量组α
1
,α
2
,α
3
正交化。令 β
1
=α
1
,β
2
=α
2
-[*]β
1
=(-1,0,-1)
T
,β
3
=α
3
下面将向量组β
1
,β
2
,β
3
,单位化。令 [*] 则二次型χ
T
Aχ在正交变换χ=Qy下的标准型为6y
3
2
。 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/8fr4777K
0
考研数学一
相关试题推荐
求
设曲线L是抛物柱面x=2y2与平面x+z=1的交线.求曲线L分别绕各个坐标轴旋转一周的曲面方程.
设函数P(x,y),Q(x,y)在单连通区域D内有一阶连续偏导数,L为D内曲线,则曲线积分与路径无关的充要条件为()
设二维随机变量(X,Y)的联合密度函数为求随机变量X,Y的边缘密度函数;
甲、乙两人独立对同一目标进行射击,命中目标概率分别为60%和50%.甲、乙两人任选一人,由此人射击,目标已被击中,求是甲击中的概率.
设X1,X2,…,Xn独立同分布,X1的取值有四种可能,其概率分布分别为:p1=1一θ,p2=θ一θ2,p3=θ2一θ3,p4=θ3,记Ni为X1,X2,…,Xn中出现各种可能的结
已知n阶矩阵A的每行元素之和为a,求A的一个特征值,当k是自然数时,求Ak的每行元素之和.
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值.试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}.
判别级数的敛散性,其中{xn}是单调递增而且有界的正数数列.
计算曲线积分I=,其中L是从点A(一a,0)经上半椭圆=1(y≥0)到点B(a,0)的弧段.
随机试题
A.由纤维组织及内皮细胞修复B.由周围的腺上皮细胞修复C.由肉芽组织及周围腺上皮细胞修复D.由周围的鳞状上皮细胞修复胃溃疡愈合
可摘局部义齿人工后牙颊舌径宽度小于天然牙的目的是
城市化水平与经济发展关系的曲线表明,经济发展的前期阶段人均GNP增加一定数量(如100美元),需要相应提高的城镇人口比重的幅度应该()。
原材料账户期初余额为50万元,本期购进原材料30万元,生产领用原材料40万元,则期末账户上的原材料为()万元。
在归整或保存审计工作底稿时,下列表述中正确的是()。
运动负荷就是负荷量,它是由时间、数量和距离组成的。()
某居民违章搭建,严重影响市容。执法人员对他说:“如果你不在规定期限内自行拆除。那么,我们将依法强拆。”该居民回答:“我坚决不同意。”按照居民的说法,下列哪项判断是他同意的?()
私自拆阅邮件或窃听公民电话等通讯内容的行为是侵犯公民()的行为。
马克思主义唯物史观产生前,唯心史观长期占统治地位的根源在于()。
WhathelpsmaketheMiddleAtlanticStatesamajorcenterofinternationaltrade?
最新回复
(
0
)