首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|。
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|。
admin
2021-11-09
42
问题
设A为n阶非零矩阵,且A
2
=A,r(A)=r(0<r<n).求|5E+A|。
选项
答案
因为A
2
=A得A(E-A)=O得r(A)+r(E-A)=n,推出A可以对角化。 由A
2
=A,得∣A∣·∣E-A∣=0,所以矩阵A的特征值为λ=0或1, 因为r(A)=r且0<r<n,所以0和1都为A的特征值,且λ=1为r重特征值,λ=0为n-r重特征值,所以5E+A的特征值为λ=6(r重),λ=5(n-r重),故|5E+A|=5
n-r
×6
r
.
解析
转载请注明原文地址:https://kaotiyun.com/show/8gy4777K
0
考研数学二
相关试题推荐
设n阶矩阵A=(α1,α2,…,αn)的前n-1个列向量线性相关,后n-1个列向量线性无关,且α1+2α2+…+(n-1)αn-1=0,b=α1+α2+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
讨论f(χ,y)=在点(0,0)处的连续性、可偏导性及可微性.
把二重积分f(χ,y)出dχdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线χ+y=1,χ=1,y=1围成.
设二阶常系数非齐次线性微分方程y〞+y′+qy=Q(χ)有特解y=3e-4χ+χ2+3χ+2,则Q(χ)=_______,该微分方程的通解为_______.
已知A=(α1,α2,α3,α4),非齐次线性方程组Ax=b的通解为(1,1,1,1)T+k1(1,0,2,1)T+k2(2,1,1,-1)T.令C=(α1,α2,α3,α4,b),求Cx=b的通解.
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解。
设的一个特征值为λ1=2,其对应的特征向量为ξ1=.求常数a,b,c.
当x→1时,函数的极限()
一射手进行射击,击中目标的概率为p(0<p<1),现在他领到5发子弹,进行射击直到命中目标或子弹用完为止,以X表示他射击实际脱靶的次数,则P{x=1}=__________.
∫01χarctanχdχ=_______.
随机试题
某企业A产品经过两道工序加工完成。生产成本在完工产成品和在产品之间分配采用约当产量比例法。2012年6月与A产品有关的资料如下:(1)A产品单位工时定额80小时,其中第一道工序30小时,第二道工序50小时,假定各工序内在产品完工程度平均为50%。第二道工序
传热介质是隔开烹饪原料与容器面的液体。()
男性,60岁,锄草时出现严重的呼吸窘迫,无发热咳嗽,咳痰和感冒症状,吸烟每年600多支。体检:不能说出完整一句话,呼吸动度微弱,肺有喘鸣,双肺底有水泡音。X线胸片:双肺高度膨胀,纹理粗,双侧胸腔少量积液,心脏侧位片较以前有轻度增大。ECG示:窦性心动过速,
2型糖尿病患者胰岛素的分泌方式为
治疗皮肤黏膜淋巴综合征,常用阿司匹林,热退后一般需要服用的时间是
下列评价方法中,属于互斥型投资方案经济效果动态评价方法的有()。
在跳跃项目比赛中,通常有一名主裁判手中持有红、白旗帜各一面,用来示意运动员试跳是否成功。举自旗表示试跳失败,成绩无效;举红旗表示成功,成绩有效。()
[A]newspaper[B]airport[C]map[D]railwaystation[E]passport[F]postoffice[G]libraryPeoplegotheretoborrowbooks.
PassageFour(1)Inthego-goyearsofthelate1990s,noeconomictheoristlookedbetterthanJosephSchumpeter,theAustr
Nowadays,incominggenerationsreallyrelynowonthepowerofthe"Internet"whenitcomestosearchingforinformation.Justt
最新回复
(
0
)