设f(χ)二阶可导,=1,f(1)=1,证明:存在ξ∈(0,1),使得f〞(ξ)-f′(ξ)+1=0.

admin2019-08-23  55

问题 设f(χ)二阶可导,=1,f(1)=1,证明:存在ξ∈(0,1),使得f〞(ξ)-f′(ξ)+1=0.

选项

答案由[*]=1得f(0)=0,f′(0)=1, 由拉格朗日中值定理,存在c∈(0,1),使得f′(c)=[*]=1. 令φ(χ)=e-χ[f′(χ)-1],φ(0)=φ(c)=0, 由罗尔定理,存在ξ∈(0,c)[*](0,1),使得φ′(ξ)=0, 而φ′(χ)=e-χ[f〞(χ)-f′(χ)+1]且e-χ≠0,故f〞(ξ)=-f′(ξ)+1=0.

解析
转载请注明原文地址:https://kaotiyun.com/show/19A4777K
0

随机试题
最新回复(0)