首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[0,1]上连续且满足f(0)=1,f′(χ)-f(χ)=a(χ-1).y=f(χ),χ=0,χ=1,y=0围成的平面区域绕χ轴旋转一周所得的旋转体体积最小,求f(χ).
设f(χ)在[0,1]上连续且满足f(0)=1,f′(χ)-f(χ)=a(χ-1).y=f(χ),χ=0,χ=1,y=0围成的平面区域绕χ轴旋转一周所得的旋转体体积最小,求f(χ).
admin
2019-08-23
73
问题
设f(χ)在[0,1]上连续且满足f(0)=1,f′(χ)-f(χ)=a(χ-1).y=f(χ),χ=0,χ=1,y=0围成的平面区域绕χ轴旋转一周所得的旋转体体积最小,求f(χ).
选项
答案
由f′(χ)=f(χ)=a(χ-1)得 f(χ)=[a∫(χ-1)e
∫-1dχ
dχ+C]e
-∫-dχ
=Ce
χ
aχ, 由f(0)=1得C=1,故f(χ)=e
χ
-aχ. V(a)=π∫
0
1
f
2
(χ)dχ=[*], 由V′(a)=π(-2+[*])=0得a=3,因为V〞(a)=[*]>0,所以当a=3时,旋转体的体积最小,故f(χ)=e
χ
-3χ.
解析
转载请注明原文地址:https://kaotiyun.com/show/89A4777K
0
考研数学二
相关试题推荐
设求f(x)的值域。
设常数a﹥0,积分,试比较I1与I2的大小,要求写明推导过程.
A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,ξ3=-2对应的特征向量是ξ3.(I)问ξ1﹢ξ2是否是A的特征向量?说明理由;(Ⅱ)问ξ2﹢ξ3是否是A的特征向量?说明理由;(Ⅲ)证明任意3维非零向量β都是A2的特征向
设平面区域D={(x,y)|(x-1)2﹢(y-1)2≤2},I1=(x﹢y)dσ,I21=(1﹢x﹢y)dσ.则正确的是()
设三阶实对称矩阵A的特征值为λ1=一1,λ2=λ3=1,对应于λ1的特征向量为,求A.
设矩阵A的伴随矩阵A*=,且ABA-1=BA-1+3E,其中E为四阶单位矩阵,求矩阵B。
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为k1+k2,设β=,求Aβ.
[*]由密度函数求分布函数可以用积分法,但当涉及分段密度函数时一定要分清需要积分的区域,故一般先画个草图(图3-2),标出非零的密度函数,然后分不同情况观察(X,Y)落在给定的(x,y)左下方平面区域内的概率,从而计算F(x,y)的值。在计算随机变量满足某
设矩阵(1)已知A的一个特征值为3,试求y;(2)求矩阵P,使(AP)T(AP)为对角矩阵.
设A*为3阶方阵A的伴随矩阵,|A|=,求|(3A)-1-2A*|的值.
随机试题
根据药物特性,不能用于口服的是()。
适用于制作蔬菜的玉米类型是________。
可证明痰液来自肺及支气管深部的痰液涂片需要见到的细胞为
贸易术语具有两重性,即一方面表示交货条件,另一方面表示成交价格的构成因素,这两者是无关联的。()
根据有关规定,可以不征或免征土地增值税的有()。
当产品的市场需求处于充分需求状态时,企业通常应进行()市场营销。
教育是社会主义现代化建设的基础,国家保障教育事业()
当你端着满满的一杯咖啡行走时,如果你的眼睛老是盯着液面,心中总在设法使之平衡,结果你会发现咖啡液面的波动会越来越剧烈,以至溅出杯子。相反,如果你不过分地小心翼翼,大胆地走,它反而不会溅出杯子。政府对经济的干预也是这样,_______。横线处应填入
Entertheinformationage.Informationistherawmaterialformanyofthebusinessactivitiesshapingthisnewera,(1)_____ir
Thispassageisfromapieceof______.Whatdoyouknowaboutthecenter’semployees?
最新回复
(
0
)