首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4阶矩阵,λi(i=1,2,3,4)是矩阵A的4个不同的特征值,对应的特征向量分别为α1,α2,α3,α4,令β=α1+α2+α3+α4。 (Ⅰ)证明β,Aβ,A2β,A3β线性无关; (Ⅱ)如果A4β=Aβ,求A-E的秩。
设A是4阶矩阵,λi(i=1,2,3,4)是矩阵A的4个不同的特征值,对应的特征向量分别为α1,α2,α3,α4,令β=α1+α2+α3+α4。 (Ⅰ)证明β,Aβ,A2β,A3β线性无关; (Ⅱ)如果A4β=Aβ,求A-E的秩。
admin
2019-01-25
37
问题
设A是4阶矩阵,λ
i
(i=1,2,3,4)是矩阵A的4个不同的特征值,对应的特征向量分别为α
1
,α
2
,α
3
,α
4
,令β=α
1
+α
2
+α
3
+α
4
。
(Ⅰ)证明β,Aβ,A
2
β,A
3
β线性无关;
(Ⅱ)如果A
4
β=Aβ,求A-E的秩。
选项
答案
(Ⅰ)设 k
1
β+k
2
Aβ+k
3
Aβ+k
4
A
3
β=0, 由题意可知Aα
i
=λ
i
α(i=1,2,3,4),则有下列式子成立 Aβ=Aα
1
+Aα
2
+Aα
3
+Aα
4
=λ
1
α
1
+λ
2
α+λ
3
α
3
+λ
4
α
4
, A
2
β=A
2
α
1
+A
2
α
2
+A
2
α
3
+A
2
α
4
=λ
2
1
α
1
+λ
2
2
α
2
+λ
2
3
α
3
+λ
2
α
4
, A
3
β=A
3
α
1
+A
3
α
2
+A
3
α
3
+A
3
α
4
=λ
3
1
α
1
+λ
3
2
α
2
+λ
3
3
α
3
+λ
3
4
α
4
。 将上述三个式子代入k
1
β+k
2
Aβ+k
3
A
2
β+k
4
A
3
β=0可得 (k
1
+k
2
λ
1
+k
3
λ
2
1
+k
4
λ
3
1
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
+k
4
λ
3
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
2
3
+k
4
λ
3
3
)α
3
+(k
1
+k
2
λ
4
+k
3
λ
2
4
+k
4
λ
3
4
)α
4
=0, 由于α
1
,α
2
,α
3
,α
4
是对应于不同特征值的特征向量,因此线性无关,从而有 [*] 系数行列式为范德蒙德行列式 [*] 因此必有k
1
=k
2
=k
3
=k
4
=0,根据线性无关的定义可知,β,Aβ,A
2
β,A
3
β线性无关。 (Ⅱ)已知A
4
β=Aβ,因此有 A(β,Aβ,A
2
β,A
3
β)=(Aβ,A
2
β,A
3
β,A
4
β)=(Aβ,A
2
β,A
3
β,Aβ) [*] 令P=(β,β,A
2
β,A
3
β),由β,Aβ,A
2
β,A
3
β线性无关可知矩阵P可逆。上式最后的矩阵设为B,则有 [*]
解析
本题考查向量组线性无关的证明及利用相似矩阵求秩。第一问通过已知列出向量组的线性组合表达式,证明系数全部为零即可,其中对任意不为0的数m,λ
m
是矩阵A
m
的特征值。第二问找出一个与矩阵A相似的矩阵B,相似矩阵有相同的特征值和特征向量,因此A-E的秩等于B-E的秩。
转载请注明原文地址:https://kaotiyun.com/show/8hP4777K
0
考研数学三
相关试题推荐
求解微分方程.
求解微分方程(y—x2)y’=x.
已知A是n阶实对称矩阵,λ1,λ2,…,λn是A的特征值,ξ1,ξ2,…,ξn是A对应的n个标准正交特征向量,证明:A可表示为A=λ1ξ1ξ1T+λ2ξ2ξ2T+…+λnξnξnT.
设A,B为同阶方阵,(1)如果A,B相似,试证:A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,B均为实对称矩阵时,试证:(1)的逆命题成立.
设A是m×n矩阵,B是n×l矩阵,证明:方程组ABX=0和BX=0是同解方程组的充要条件是r(AB)=r(B).
设矩阵A3×3满足A2=E,但A≠±E.证明:[r(A—E)一1][r(A+E)一1]=0.
设f(x)在[a,b]上连续,在(a,b)内可导,又b>a>0,试证:存在两点ξ,η∈(a,b),使得f’(ξ)(b一a)=ηf’(η)(lnb—lna).
设A,B为两个任意事件,证明:|P(AB)一P(A)P(B)|≤.
设X1,X2,…,X8和Y1,Y2,…,Y10分别是来自正态总体N(-1,4)和N(2,5)的简单随机样本,且相互独立,S12,S22分别为这两个样本的方差,则服从F(7,9)分布的统计量是()
设f(x)在x=0的某邻域连续且f(0)=0,则f(x)在x=0处
随机试题
深度知觉的产生有哪些线索?
以下可主寒证的脉象有
急性牙髓炎的应急处理最好是
子宫收缩乏力可导致()。
沈某向住建委申请公开一企业向该委提交的某危改项目纳入危改范围的意见和申报材料。该委以信息中有企业联系人联系电话和地址等个人隐私为由拒绝公开,沈某起诉,法院受理。下列哪些说法是正确的?
旧沥青路面再生采用现场热再生工艺的优点有()。
法治的核心是:制约国家权力的滥用、保障公民的自由权利。()
《御园敕令》
Whatimpactcanmobilephoneshaveontheirusers’health?Manyindividualsareconcernedaboutthesupposedilleffectscaused
Anthropologistsusuallystudysimple,unindustrializedsocietiesbecausethenumberof______islimited.
最新回复
(
0
)