首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是4阶矩阵,λi(i=1,2,3,4)是矩阵A的4个不同的特征值,对应的特征向量分别为α1,α2,α3,α4,令β=α1+α2+α3+α4。 (Ⅰ)证明β,Aβ,A2β,A3β线性无关; (Ⅱ)如果A4β=Aβ,求A-E的秩。
设A是4阶矩阵,λi(i=1,2,3,4)是矩阵A的4个不同的特征值,对应的特征向量分别为α1,α2,α3,α4,令β=α1+α2+α3+α4。 (Ⅰ)证明β,Aβ,A2β,A3β线性无关; (Ⅱ)如果A4β=Aβ,求A-E的秩。
admin
2019-01-25
46
问题
设A是4阶矩阵,λ
i
(i=1,2,3,4)是矩阵A的4个不同的特征值,对应的特征向量分别为α
1
,α
2
,α
3
,α
4
,令β=α
1
+α
2
+α
3
+α
4
。
(Ⅰ)证明β,Aβ,A
2
β,A
3
β线性无关;
(Ⅱ)如果A
4
β=Aβ,求A-E的秩。
选项
答案
(Ⅰ)设 k
1
β+k
2
Aβ+k
3
Aβ+k
4
A
3
β=0, 由题意可知Aα
i
=λ
i
α(i=1,2,3,4),则有下列式子成立 Aβ=Aα
1
+Aα
2
+Aα
3
+Aα
4
=λ
1
α
1
+λ
2
α+λ
3
α
3
+λ
4
α
4
, A
2
β=A
2
α
1
+A
2
α
2
+A
2
α
3
+A
2
α
4
=λ
2
1
α
1
+λ
2
2
α
2
+λ
2
3
α
3
+λ
2
α
4
, A
3
β=A
3
α
1
+A
3
α
2
+A
3
α
3
+A
3
α
4
=λ
3
1
α
1
+λ
3
2
α
2
+λ
3
3
α
3
+λ
3
4
α
4
。 将上述三个式子代入k
1
β+k
2
Aβ+k
3
A
2
β+k
4
A
3
β=0可得 (k
1
+k
2
λ
1
+k
3
λ
2
1
+k
4
λ
3
1
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
+k
4
λ
3
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
2
3
+k
4
λ
3
3
)α
3
+(k
1
+k
2
λ
4
+k
3
λ
2
4
+k
4
λ
3
4
)α
4
=0, 由于α
1
,α
2
,α
3
,α
4
是对应于不同特征值的特征向量,因此线性无关,从而有 [*] 系数行列式为范德蒙德行列式 [*] 因此必有k
1
=k
2
=k
3
=k
4
=0,根据线性无关的定义可知,β,Aβ,A
2
β,A
3
β线性无关。 (Ⅱ)已知A
4
β=Aβ,因此有 A(β,Aβ,A
2
β,A
3
β)=(Aβ,A
2
β,A
3
β,A
4
β)=(Aβ,A
2
β,A
3
β,Aβ) [*] 令P=(β,β,A
2
β,A
3
β),由β,Aβ,A
2
β,A
3
β线性无关可知矩阵P可逆。上式最后的矩阵设为B,则有 [*]
解析
本题考查向量组线性无关的证明及利用相似矩阵求秩。第一问通过已知列出向量组的线性组合表达式,证明系数全部为零即可,其中对任意不为0的数m,λ
m
是矩阵A
m
的特征值。第二问找出一个与矩阵A相似的矩阵B,相似矩阵有相同的特征值和特征向量,因此A-E的秩等于B-E的秩。
转载请注明原文地址:https://kaotiyun.com/show/8hP4777K
0
考研数学三
相关试题推荐
将函数f(x)=ln(4—3x—x2)展开成x的幂级数.
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量,证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
已知问a,b为何值时,β不是α1,α2,α3,α4的线性组合?a,b为何值时,β有α1,α2,α3,α4的唯一线性表示式?并写出该表示式.
设函数f(x)在区间[a,b]上连续,且区域D={(x,y)|a≤x≤b,a≤y≤b},证明:[∫abf(x)dx]2(b—a)∫abf2(x)dx.
求二重积分I=(x+y)2dxdy,其中积分区域D={(x,y)|0≤ay≤x2+y2≤2ay,a>0}.
设积分区域D:x2+y2≤R2,其中y≥0,则().其中D1是积分区域D在x≥0的部分区域.
设随机变量X1,X2,…相互独立且同服从参数为λ的指数分布,其中Ф(x)=,则().
设A和B为任意二不相容事件,且P(A)P(B)>0,则必有
设f(x)在x0的邻域内四阶可导,且|f(4)(x)|≤M(M>0).证明:对此邻域内任一异于x0的点x,有其中x’为x关于x0的对称点.
设f(x)在x=0的邻域内有定义,f(0)=1,且=0,则f(x)在x=0处().
随机试题
胃痛属寒邪客胃者,治疗当
机电工程注册建造师施工管理签章文件,正确填写的通用要求项有()。[2010年真题]
()防护属于对沿河河堤河岸冲刷的间接防护。
某商品流通企业的供应商,2008年按订单确认的交货总批次为50次,按时按量交货的实际批次为48次,则该供应商的准时交货率为()。
【2014.黑龙江大庆】教育对政治经济制度的促进作用主要表现在()。
转述式通报是针对()所反映的先进事迹、错误事实或严重情况分析、评价,提出处理意见。
下列属于社会公德特点的有()。
骡子:耕畜:犁地
我国宪法修改必须由()。
A、 B、 C、 B
最新回复
(
0
)