首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 (Ⅰ)求方程组(1)的一个基础解系; (Ⅱ)当a为何值时,方程组(1)与(2)有非零公共解?并求出所有
设四元齐次线性方程组(1)为 而已知另一四元齐次线性方程组(2)的一个基础解系为 α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。 (Ⅰ)求方程组(1)的一个基础解系; (Ⅱ)当a为何值时,方程组(1)与(2)有非零公共解?并求出所有
admin
2017-12-29
65
问题
设四元齐次线性方程组(1)为
而已知另一四元齐次线性方程组(2)的一个基础解系为
α
1
=(2,一1,a+2,1)
T
,α
2
=(一1,2,4,a+8)
T
。
(Ⅰ)求方程组(1)的一个基础解系;
(Ⅱ)当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
选项
答案
(Ⅰ)对方程组(1)的系数矩阵作初等行变换,有 [*] 则n—r(A)=4—2=2,基础解系由两个线性无关的解向量构成。取x
3
,x
4
为自由变量,得 β
1
=(5,一3,1,0)
T
,β
2
=(一3,2,0,1)
T
是方程组(1)的基础解系。 (Ⅱ)设η是方程组(1)与(2)的非零公共解,则 η=k
1
β
1
+k
2
β
2
=l
1
α
1
+l
2
α
2
,其中k
1
,k
2
与l
1
,l
2
均是不全为0的常数。 由k
1
β
1
+k
2
β
2
一l
1
α
1
—l
2
α
2
=0,得齐次方程组 [*] 对方程组(3)的系数矩阵作初等行变换,有 [*] 当a≠一1时,方程组(3)的系数矩阵变为 [*] 可知方程组(3)只有零解,即k
1
=k
2
=l
1
=l
2
=0,于是η=0,不合题意。 当a=一1时,方程组(3)系数矩阵变为 [*] 解得k
1
=l
1
+4l
2
,k
2
=l
1
+7l
2
。 于是η=(l
1
+4l
2
)β
1
+(l
1
+7l
2
)β
2
=l
1
α
1
+l
2
α
2
。 所以当a=一1时,方程组(1)与(2)有非零公共解,且公共解是 l
1
(2,一1,1,1)
T
+l
2
(一1,2,4,7)
T
,l
1
,l
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/8mX4777K
0
考研数学三
相关试题推荐
证明:方阵A与所有同阶对角阵可交换的充分必要条件是A是对角阵.
变换下列二次积分的积分次序:
设随机变量X的概率密度为求X的分布函数.
由曲线y=x3,y=0及x=1所围图形绕x轴旋转一周得到的旋转体的体积为________.
求函数项级数e-x+2e-2x+…+,ne-nx+…收敛时x的取值范围;
设φ(x)是以2π为周期的连续函数,且Ф(x)=φ(x),Ф(0)=0.方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
交换下列累次积分的积分次序.
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)(4)F(x)=f(x,y0)在点x0处可微,G(y)=f
设A,B为三阶相似矩阵,且|2E+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=____________。
设f(t)连续并满足f(t)=cos2t+∫0xf(t)sinsds,求f(t)。
随机试题
基本型群钻的内刃是修磨的内刃前面与月牙槽后面的交线。()
井巷穿过含水层时对水文地质的观测,要求详细描述的内容包括()。
CIFLinerTerms和CIFLanded合同的主要区别是,在后一种贸易术语下,买方不仅要承担卸货费,而且还需支付有可能产生的驳船费与码头费。()
上海世博电器(中国)有限公司与应运(香港)有限公司签订进口电路板组立(零部件)及不作价关键设备(未列入不予免税目录)的合同(合同期一年),升在货物进口前办妥海关备案手续。货物于2009年1月28日由KA802航班经香港运抵上海浦东机场,具境内目的地
中央银行与政府的关系主要体现在列于负债方的接受政府等机构的存款,列于资产方的通过持有政府债券融资给政府和为国家外汇储备、黄金等项目,主要描述的是中央银行的()职能。
学生在开展以“保护绿水青山”为主题的综合实践活动过程中,自己选择指导教师,遇到问题积极主动查阅资料,确定活动方案,自觉呈现活动结果。这体现出综合实践活动课程的()。
世间上的良缘除了“天”助还少不了一人的帮忙,这就是“红娘”,“红娘”的由来出自()。
МеняоченьинтересуютстихиМаяковского,_____светлыйобразЛенина.
Wherearetheytalking?
In1969,theNationalWildlifeFederationbegantorecordanindexofenvironmentalqualitywhichmeasuresprogressordeclinei
最新回复
(
0
)