已知 (1)求x,y. (2)求作可逆矩阵U,使得U-1AU=B.

admin2018-11-20  25

问题 已知
(1)求x,y.
(2)求作可逆矩阵U,使得U-1AU=B.

选项

答案(1)A与B相似,从而有相同的特征值2,2,y. 2是二重特征值,于是 r(A一2E)=1. [*] A与B相似从而tr(A)=tr(B),于是1+4+5=2+2+y.得y=6. (2)求属于2的两个线性无关的特征向量:即求(A一2E)X=0的基础解系: [*] 得(A一2E)X=0的同解方程组 x1=一x2+x3, 得基础解系η1=(1,一1,0)T,η2=(1,0,1)T. 求属于6的一个特征向量:即求(A一6E)X=0的一个非零解: [*] 得(A一6E)X=0的同解方程组 [*] 得解η3=(1,一2,3)T. 令U=(η1,η2,η3),则 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/8wW4777K
0

最新回复(0)