首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
admin
2017-07-26
64
问题
设f(x)可导,且它的任何两个零点的距离都大于某一个正数(称零点是孤立的),g(x)连续,且当f(x)≠0时g(x)可导,令φ(x)=g(x)|f(x)|,讨论φ(x)的可导性.
选项
答案
设x
0
为分段点. 若f(x
0
)≠0,则由题设可知,存在δ>0,使得当|x—x
0
|<δ时,f(x)与f(x
0
)同号,于是在该邻域内必有P(x)=f(x)g(x)或φ(x)=—f(x)g(x)之一成立,所以φ(x)在点x
0
处必可导. 若f(x
0
)=0,不妨假设 [*] 所以,φ(x)在x
0
处可导→f’(x
0
)g(x
0
)=0.且当f’(x
0
)g(x
0
)=0时,φ’(x
0
)=0.
解析
这是分段函数的可导性问题.只需讨论在分段点x
0
处是否可导.分f(x
0
)≠0与f(x
0
)=0两种情形讨论.
转载请注明原文地址:https://kaotiyun.com/show/8yH4777K
0
考研数学三
相关试题推荐
设函数f(x)在区间[0,4]上连续,且,求证:存在ξ∈(0,4)使得f(ξ)十f(4一ξ)=0.
曲线y=xe-x(0≤x
[*]
设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
验证下列函数满足拉普拉斯方程uxx+uxy=0:(1)u=arctanx/y;(2)u=sinx×coshy+cosx×sinhy;(3)u=e-xcosy-e-ycosx.
判别下列级数的收敛性,并求出其中收敛级数的和:
设A,B是二随机事件;随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立.
假设随机变量X和Y同分布,X的概率密度为f(x)=(Ⅰ)已知事件A={X>a}和B={Y>a}独立,且P(A∪B)=3/4,求常数a;(Ⅱ)求1/X2的数学期望.
设数列极限函数f(x)=,则f(x)的定义域I和f(x)的连续区间J分别是()
随机试题
欣赏你的同事,你和同事之间会合作得更加融洽:欣赏你的下属,下属会更加努力地工作;欣赏你的爱人,爱情会更加甘甜;欣赏你的学生,学生会更加可爱。________。横线处应填入的句子是()。
女孩,16岁,近10个月来右上腹痛频繁伴黄疸,且逐渐加重,大便呈陶土色,消炎利胆治疗无好转。患儿生后6天曾行先天性胆总管囊肿十二指肠吻合术。确诊的方法以下哪种较好
北京市无业人员韩某,长期贩卖黄色光盘,2010年年底在一次打击盗版光盘活动中,被公安机关抓获,北京市劳动教养管理委员会根据《国务院关于劳动教养问题的决定》及有关规定,作出对韩某收容劳动教养1年的决定。复议机关与一审人民法院均维持原劳动教养1年的决定,韩某提
奥苏贝尔的问题解决模式的步骤有【】
日期2010-1-20在Excel系统内部存储的是()。
能够提高电力系统静态稳定性的措施有()。
河姆渡和半坡居民过着定居生活,最主要的原因是:
甲状舌管(thyroglossalduct)
"Ah,yes,divorce",RobinWilliamsoncemused,"fromtheLatinwordmeaningtoripoutaman’sgenitalsthroughhiswallet".The
如下图所示,网络站点A发送数据包给B,在数据包经过路由器转发的过程中,封装在数据包3中的目的IP地址和目的MAC地址是()。
最新回复
(
0
)