首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且 ∫0πf(x)dx=∫0πf(x)cosxdx=0. 试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
设函数f(x)在[0,π]上连续,且 ∫0πf(x)dx=∫0πf(x)cosxdx=0. 试证明:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0.
admin
2017-10-23
54
问题
设函数f(x)在[0,π]上连续,且
∫
0
π
f(x)dx=∫
0
π
f(x)cosxdx=0.
试证明:在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,0≤x≤π,则有F(0)=0,F(π)=0.又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x)=F(x)cosx|
0
π
+∫
0
π
F(x)sinxdx=∫
0
π
F(x)sindx, 所以存在ξ∈(0,π),使F(ξ)sinξ=0,因若不然,则在(0,π)内F(x)sinx恒为正或恒为负,均与∫
0
π
F(x)sinxdx=0矛盾.但当ξ∈(0,π)时sinξ≠0,故F(ξ)=0. 由以上证得,存在满足0<ξ<π的ξ,使得 F(0)=F(ξ)=F(π)=0. 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,f)和ξ
2
∈(ξ,π),使 F’(ξ
1
)=F’(ξ
2
)=0,即 f(ξ
1
)=f(ξ
2
)=0.
解析
令F(x)=∫
0
x
f(t)dt,则F(0)=F(π)=0.若由条件∫
0
π
f(x)cosxdx=0能找到另一点ξ∈(0,π),使F(ξ)=0,再用两次罗尔定理即可.
转载请注明原文地址:https://kaotiyun.com/show/8zX4777K
0
考研数学三
相关试题推荐
设f(x)二阶连续可导,f’(0)=0,且,则().
设f(x)=,且f’(0)存在,则a=__________,b=__________,c=__________
求微分方程y"一y’一6y=0的通解.
把写成极坐标的累次积分,其中D=((x,y)|0≤x≤1,0≤y≤x}.
把二重积分写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
设有幂级数(1)求该幂级数的收敛域;(2)证明此幂级数满足微分方程y"一y=一1;(3)求此幂级数的和函数.
设f(x)在(一∞,+oo)上有定义,且对任意的x,y∈(一∞,+∞)有|f(x)一f(y)|≤|x—y|.证明:|∫abf(x)dx一(b一a)f(a)|≤(b一a)2.
设f(x)在x=a的邻域内二阶可导且f’(a)≠0,则=________.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足f(1)=证明:存在ξ∈(0,1),使得f’(ξ)=2ξf(ξ).
设函数f(x)在点x0的某邻域内有定义,且f(x)在点x0处间断,则在点x0处必定间断的函数为()
随机试题
如何清洁火花塞?
不终岁,薄产累尽。
在Word2010中,下列有关页边距的叙述,不正确的是
老年肺心病患者,近2d咳嗽、气促加重,神志恍偬,动脉血气分析;pH7.30,PaO251mmHg,PaCO282mmHg,HCO3-35mol/L。根据血气分析结果患者存在哪种类型的酸碱失衡
罗某应向哪个人民法院提起离婚诉讼?法院判决离婚后,对于财产分割罗某和周某有争议,可否申请再审?
《职业病防治法》实施后,国务院对国务院卫生行政部门和国务院负责安全生产监督管理的部门在职业病防治工作中的职责作出了调整,其中安全监督管理部门的职责包括()。
营业执照企业注册地与企业经营办公地不一致的原因,不可能的是()。
“运费”栏应填()。
以下叙述中正确的是
—Readthearticleontheoppositepageaboutanexperimenttohelpmanagersimprovetheirworklifebalance.—Choosethebest
最新回复
(
0
)