首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
admin
2017-12-29
95
问题
设A是秩为n一1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是( )
选项
A、α
1
+α
2
B、kα
1
C、k(α
1
+α
2
)
D、k(α
1
一α
2
)
答案
D
解析
因为A是秩为n一1的n阶矩阵,所以Ax=0的基础解系只含一个非零向量。又因为α
1
,α
2
是方程组Ax=0的两个不同的解向量,所以α
1
一α
2
必为方程组Ax=0的一个非零解,即α
1
一α
2
是Ax=0的一个基础解系,所以Ax=0的通解必定是k(α
1
一α
2
)。选D。此题中其他选项不一定正确。因为通解中必有任意常数,所以选项A不正确;若α
1
=0,则选项B不正确;若α
1
=一α
2
≠0,则α
1
+α
2
=0,此时选项C不正确。
转载请注明原文地址:https://kaotiyun.com/show/FLX4777K
0
考研数学三
相关试题推荐
ex展开成(x一3)的幂级数为________.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离恒等于该点处的切线在y轴上的截距,且L经过点求L位于第一象限部分的一条切线,使该切线与L以及两坐标轴所围图形的面积最小.
求微分方程y"+2y’一3y—e-3x的通解.
设φ(x)是以2π为周期的连续函数,且Ф(x)=φ(x),Ф(0)=0.方程是否有以2π为周期的解?若有,请写出所需条件;若没有,请说明理由.
交换下列累次积分的积分次序.
设f(u)为连续函数,D是由y=1,x2一y2=1及y=0所围成的平面闭区域,则=________.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵.证明:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
在区间[0,a]上|f(x)|≤M,且f(x)在(0,a)内取得极大值.证明:|f’(0)|+|f’(A)|≤Ma.
求差分方程yt+1一ayt=2t+1的通解.
求的连续区间、间断点并判别其类型.
随机试题
B型超声最早在妊娠几周可见到妊娠囊
下列哪种粉尘对呼吸系统无致癌作用
为降低高胆红素血症,防止核黄疸的发生最为有效的方法是
A.哌嗪B.阿苯达唑C.三苯双脒D.青蒿素E.吡喹酮蛔虫病和鞭虫病的首选药是()。
汇率政策包含以下内容()。
绩效管理指标的贯彻执行必须保证绩效管理的科学性、合理性和公平性,剔除个人偏好等感情因素,这体现了起草绩效管理制度()的要求。
以下对Excel表中单元格的表示不正确的是()。
如果有学生在课堂上故意刁难,你该如何应对?
2015年1-4月,北京星级饭店接待台湾同胞住宿人次约为:
电视节目的娱乐化、世俗化________,源自社会大众生存状态的改变。随着社会的发展,人们开始重视物质享受和感官快乐,重新确立了感性价值在日常生活中的地位和________,大众传媒消费主义倾向不自觉地体现了时代文化的这种________及价值取向。填入画
最新回复
(
0
)