首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(χ1,χ2,χ3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为①求A.②证明A+E是正定矩阵.
二次型f(χ1,χ2,χ3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为①求A.②证明A+E是正定矩阵.
admin
2019-05-11
49
问题
二次型f(χ
1
,χ
2
,χ
3
)=X
T
AX在正交变换X=QY下化为y
1
2
+y
2
2
,Q的第3列为
①求A.②证明A+E是正定矩阵.
选项
答案
①条件说明 Q
-1
AQ=Q
T
AQ=[*] 于是A的特征值为1,1,0,并且Q的第3列=[*](1,0,1)
T
是A的特征值为。的特征向量.记α
1
=(1,0,1)
T
,它也是A的特征值为0的特征向量. A是实对称矩阵,它的属于特征值1的特征向量都和α
1
正交,即是方程式χ
1
+χ
3
=0的非零解. α
2
=(1,0,-1)
T
,α
3
=(0,1,0)
T
是此方程式的基础解系,它们是A的特征值为1的两个特征向量. 建立矩阵方程 A(α
1
,α
2
,α
3
)=(0,α
2
,α
3
), 两边做转置,得 [*] 解此矩阵方程 [*] ②A+E也是实对称矩阵,特征值为2,2,1,因此是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/98V4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,a]上连续可导,且f(a)=f(b)=0.证明:|f(χ)|≤∫ab|f′(χ)|dχ(a<χ<b).
设f′(χ)在[0,1]上连续且|f′(χ)|≤M.证明:
证明:当0<χ<1时,e-2χ>
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中(1)求方程组(Ⅰ)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系;(3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
求方程组的通解.
设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_______.
随机试题
可转换债券的赎回价格是事先约定的,一般为可转换债券面值的()
细胞滋养层
动物疾病发展过程中,从疾病出现最初症状到主要症状开始暴露的时期称为()
会计核算软件应能打印下列()数据。
股份支付的内在价值是指交易对方有权认购或取得的股份的公允价值。()
我国内地第一个大型主题公园是()。
阅读以下材料,完成下列问题。2012年山东省农村居民人均总收入13645.26元,同比增长12.34%。分类项目中,工资总收入4383.22元,同比增长17.98%,其中,在本乡地域内劳动得到收入2615.32元,外出就业得到收入1448.4元,同比分别
2009年末我国广义货币供应量(M2)余额为60.6万亿元,比上年末增长27.7%;狭义货币供应量(M1)余额为22.0万亿元,增长32.4%;流通中现金(M0)余额为3.8万亿元,增长11.8%。年末全部金融机构本外币各项存款余额61.2万亿元
若变量x、y已正确定义并赋值,以下符合C语言语法的表达式是
WhywastheWorldHealthDayrecognizedbyWHO?WhatcanbedoneinordertopreventababydyingfromAIDSviruspassedbyits
最新回复
(
0
)