首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(χ1,χ2,χ3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为①求A.②证明A+E是正定矩阵.
二次型f(χ1,χ2,χ3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为①求A.②证明A+E是正定矩阵.
admin
2019-05-11
33
问题
二次型f(χ
1
,χ
2
,χ
3
)=X
T
AX在正交变换X=QY下化为y
1
2
+y
2
2
,Q的第3列为
①求A.②证明A+E是正定矩阵.
选项
答案
①条件说明 Q
-1
AQ=Q
T
AQ=[*] 于是A的特征值为1,1,0,并且Q的第3列=[*](1,0,1)
T
是A的特征值为。的特征向量.记α
1
=(1,0,1)
T
,它也是A的特征值为0的特征向量. A是实对称矩阵,它的属于特征值1的特征向量都和α
1
正交,即是方程式χ
1
+χ
3
=0的非零解. α
2
=(1,0,-1)
T
,α
3
=(0,1,0)
T
是此方程式的基础解系,它们是A的特征值为1的两个特征向量. 建立矩阵方程 A(α
1
,α
2
,α
3
)=(0,α
2
,α
3
), 两边做转置,得 [*] 解此矩阵方程 [*] ②A+E也是实对称矩阵,特征值为2,2,1,因此是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/98V4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上连续,且对任意的t∈[0,1]及任意的χ1,χ2∈[a,b]满足:f(tχ1+(1-t)χ2)≤tf(χ1)+(1-t)f(χ2).证明:
证明:当0<χ<1时,e-2χ>
设an=,证明:{an}收敛,并求.
证明:r(A)=r(ATA).
设(Ⅰ),α1,α2,α3,α4为四元非齐次线性方程组BX=b的四个解,其中(1)求方程组(Ⅰ)的基础解系;(2)求方程组(Ⅱ)BX=0的基础解系;(3)(Ⅰ)与(Ⅱ)是否有公共的非零解?若有公共解求出其公共解.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为_______.
随机试题
各人民团体的领导机关编制包括()
What’sthelanguage_____inGermany?
目前最理想的永久性创面覆盖物是
把工程建设定额分为施工定额、预算定额、概算定额、概算指标、投资估算指标、工期定额等,是按照()来分类的。
现浇钢筋混凝土楼梯按楼梯段传力特点划分有()。[2016年真题]
建筑自动消防设施的建筑工程,在工程( ),施工安装单位必须委托具备相应资格的建筑消防设施检测单位进行测试,取得建筑消防设施技术测试报告。
CountryOvens是一家家族餐饮连锁店。一项意想不到的道路建设项目,使得经过位于Newtown的饭店的客流量大为增加。结果,饭店的业务量也异乎寻常地显著增加。下面哪一种类型的预算适合用来帮助饭店经理计划好人工成本?
就儿童发展整体而言,生理的成熟先于心理的成熟体现了儿童身心发展()的特点。
在小学教育实践中,真正具体实现班级学生全面、和谐发展教育目标的执行者是()。
AfterSusanJoycewaslaidofffromDigitalEquipmentCorp.,shewashorrifiedtohearoftwosuicidesinherlayoffgroup.Such
最新回复
(
0
)