首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量Y服从参数为λ=1的泊松分布,随机变量Xk=k=0,1。试求: (Ⅰ)X0和X1的联合分布律; (Ⅱ)E(X0-X1); (Ⅲ)Cov(X0,X1)。
设随机变量Y服从参数为λ=1的泊松分布,随机变量Xk=k=0,1。试求: (Ⅰ)X0和X1的联合分布律; (Ⅱ)E(X0-X1); (Ⅲ)Cov(X0,X1)。
admin
2017-11-30
54
问题
设随机变量Y服从参数为λ=1的泊松分布,随机变量X
k
=
k=0,1。试求:
(Ⅰ)X
0
和X
1
的联合分布律;
(Ⅱ)E(X
0
-X
1
);
(Ⅲ)Cov(X
0
,X
1
)。
选项
答案
(Ⅰ)P{X
0
=0,X
1
=0}=P{Y≤0,Y≤1}=P{Y=0}=e
-1
, P{X
0
=1,X
1
=0}=P{Y>0,Y≤1}=P{Y=1}=e
-1
, P{X
0
=0,X
1
=1}=P{Y≤0,Y>1}=0, P{X
0
=1,X
1
=1}=P{Y>0,Y>1}=P{Y>1} =1-P{Y=0}-P{Y=1}=1-2e
-1
。 所以X
0
和X
1
的联合分布律为: [*] (Ⅱ)由(Ⅰ)知,X
0
和X
1
的边缘分布律为: [*] 所以,E(X
0
-X
1
)=E(X
0
)-E(X
1
)=(1-e
-1
)-(1-2e
-1
)=e
-1
。 (Ⅲ)由(Ⅰ)(Ⅱ)的计算结果,X
0
X
1
的分布律为: [*] Cov(X
0
,X
1
)=E(X
0
X
1
)-E(X
0
)E(X
1
)=1-2e
-1
-(1-e
-1
)(1-2e
-1
)=e
-1
-2e
-2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/99X4777K
0
考研数学三
相关试题推荐
设随机变量X服从参数为2的指数分布,令U=,求:(1)(U,V)的分布;(2)U,V的相关系数.
设二阶常系数线性微分方程y"+ay’+by=ce有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.
设X1,X2,…,Xn是来自正态总体X~N(μ,σ2)的简单随机样本,记则服从t(n一1)分布的随机变量是().
证明:当x≥0时,f(x)=∫0x(t一t2)sin2ntdt的最大值不超过
某集邮爱好者有一个珍品邮票,如果现在(t=0)就出售,总收入为R0元,如果收藏起来待来日出售,t年末总收入为R(t)=R0eξ(t),其中ξ(t)为随机变量,服从正态分布,假定银行年利率为r,并且以连续复利计息,试求收藏多少年后,再出售可使得总收入的期望现
假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.
设X是任一非负(离散型或连续型)随机变量,已知的数学期望存在,而ε>0是任意实数,证明:不等式
求齐次线性方程组的基础解系.
随机试题
"Mummy!Mummy!Isawsomereallybigtadpoles(蝌蚪)inthepond(池塘).You’vepromisedtocatchsomeforus."Phillipsays,foll
Haveyouswitchedoffyourcomputer?Howaboutyourtelevision?Yourvideo?YourCDplayer?Andevenyourcoffeepercolator?Rea
肺痨的治疗大法为
甲公司、乙公司签订的《合作开发协议》约定,合作开发的A区房屋归甲公司、B区房屋归乙公司。乙公司与丙公司签订《委托书》,委托丙公司对外销售房屋。《委托书》中委托人签字盖章处有乙公司盖章和法定代表人王某签字,王某同时也是甲公司法定代表人。张某查看《合作开发协议
限定性集合资产管理计划投资于股票等权益类证券以及股票型证券投资基金的资产,不得超过该计划资产净值的()。
证券公司委托其他证券公司代为买卖证券的,属于操纵市场行为。( )
科教兴国
一代大师()与他的老师沈周共创了中国画史上的“吴派”风格,并与沈周、唐伯虎、仇英被合称为“明四家”(或“吴门四家”);在诗文上,他与祝允明、唐寅、徐祯卿并称“吴中四才子”。
Belowisagraphshowingthedistributionofcaraccidentsinacityduring1997.Lookatthegraphandwriteanessayofabout
Youshouldspendnomorethan40minutesonthistask.Aspartofaclassassignmentyouhavetowriteaboutthefollowingtopic
最新回复
(
0
)