首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量Y服从参数为λ=1的泊松分布,随机变量Xk=k=0,1。试求: (Ⅰ)X0和X1的联合分布律; (Ⅱ)E(X0-X1); (Ⅲ)Cov(X0,X1)。
设随机变量Y服从参数为λ=1的泊松分布,随机变量Xk=k=0,1。试求: (Ⅰ)X0和X1的联合分布律; (Ⅱ)E(X0-X1); (Ⅲ)Cov(X0,X1)。
admin
2017-11-30
68
问题
设随机变量Y服从参数为λ=1的泊松分布,随机变量X
k
=
k=0,1。试求:
(Ⅰ)X
0
和X
1
的联合分布律;
(Ⅱ)E(X
0
-X
1
);
(Ⅲ)Cov(X
0
,X
1
)。
选项
答案
(Ⅰ)P{X
0
=0,X
1
=0}=P{Y≤0,Y≤1}=P{Y=0}=e
-1
, P{X
0
=1,X
1
=0}=P{Y>0,Y≤1}=P{Y=1}=e
-1
, P{X
0
=0,X
1
=1}=P{Y≤0,Y>1}=0, P{X
0
=1,X
1
=1}=P{Y>0,Y>1}=P{Y>1} =1-P{Y=0}-P{Y=1}=1-2e
-1
。 所以X
0
和X
1
的联合分布律为: [*] (Ⅱ)由(Ⅰ)知,X
0
和X
1
的边缘分布律为: [*] 所以,E(X
0
-X
1
)=E(X
0
)-E(X
1
)=(1-e
-1
)-(1-2e
-1
)=e
-1
。 (Ⅲ)由(Ⅰ)(Ⅱ)的计算结果,X
0
X
1
的分布律为: [*] Cov(X
0
,X
1
)=E(X
0
X
1
)-E(X
0
)E(X
1
)=1-2e
-1
-(1-e
-1
)(1-2e
-1
)=e
-1
-2e
-2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/99X4777K
0
考研数学三
相关试题推荐
设随机变量X的密度函数为f(x)=e-|x|(一∞<x<+∞).(1)求E(X),D(X);(2)求Cov(X,|X|),问X,|X|是否不相关?(3)问X,|X|是否相互独立?
用变量代换x=sint将方程(1一x2)一4y=0化为y关于t的方程,并求微分方程的通解.
证明:,其中a>0为常数.
设f(x)在区间[a,b]上二阶可导且f"(x)≥0.证明:
设f(x)在x=0处二阶导数连续,且试求f(0),f’(0),f"(0)以及极限
设在区间[e,e2]上,数p,q满足条件px+q≥lnx,求使得积分I(p,q)=∫ee2(px+q一lnx)dx取得最小值的p,q的值.
求齐次线性方程组的基础解系.
随机试题
下列哪一项与新生儿肺透明膜病的发病关系最不密切
下列哪项不是“阿托品化”的指标
发展中医药事业的原则是
关于新生儿败血症,错误的是
票据市场最主要的子市场包括()。
()是教师专业发展不竭的动力,是时代发展的要求,也是教师职业特点所决定的。
Iwasdrivinginmycartheotherday.Thesunwasout,theradiowasplaying,andIwassinging【C1】________Thesongwasa【C2】__
下列关于综合布线系统的描述中,错误的是()。
VirtualDriverDrivinginvolvessharpeyesandkeenears,analyzingwithabrain,andcoordinationbetweenhands,feetandb
Theykeptontryingtheirbesttodeveloptheirbusiness,butinsuchintensemarketcom-petition,theyhadnoideaifsuccess
最新回复
(
0
)