首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=(x1+x2)2+(2x1+3x2+x3)2一5(x2+x3)2的规范形为( )
二次型f(x1,x2,x3)=(x1+x2)2+(2x1+3x2+x3)2一5(x2+x3)2的规范形为( )
admin
2018-12-19
20
问题
二次型f(x
1
,x
2
,x
3
)=(x
1
+x
2
)
2
+(2x
1
+3x
2
+x
3
)
2
一5(x
2
+x
3
)
2
的规范形为( )
选项
A、y
1
2
+y
2
2
+4y
3
2
。
B、y
2
2
一y
3
2
。
C、y
1
2
一y
2
2
—y
3
2
。
D、y
1
2
一y
2
2
+y
3
2
。
答案
B
解析
将二次型中的括号展开,并合并同类项可得
f(x
1
,x
2
,x
3
)=5x
1
2
+5x
2
2
一4
3
2
+14x
1
x
2
+4x
1
x
3
—4x
2
x
3
,
则该二次型矩阵为
则由
|λE一A|=
=λ(λ+6)(λ一12)
可知,矩阵A的特征根为12,一6,0。因此该二次型的正惯性指数p=1,负惯性指数q=1。[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/9Aj4777K
0
考研数学二
相关试题推荐
(2010年)设m,n均是正整数,则反常积分的收敛性【】
(2007年)设D是位于曲线y=(a>1,0≤χ<+∞)下方、χ轴上方的无界区域.(Ⅰ)求区域D绕χ轴旋转一周所成旋转体的体积V(a);(Ⅱ)当a为何值时,V(a)最小?并求此最小值.
(2011年)设A=(α1,α2,α3,α4)是4阶矩阵,A*为A的伴随矩阵.若(1,0,1,0)T是方程组Aχ=0的一个基础解系,则A*χ=0的基础解系可为【】
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式f′(χ)+f(χ)-∫0χf(t)dt(1)求导数f′(χ);(2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
(2011年)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
(2014年)设二次型f(χ1,χ2,χ3)=χ12-χ22+2aχ1χ3+4χ2χ3的负惯性指数为1,则a的取值范围是_______.
(2013年)矩阵相似的充分必要条件为【】
(2012年)证明:χln(-1<χ<1).
(2001年)一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
设二次型f(χ1,χ2,χ3)=XTAX=aχ12+2χ22-2χ32+2bχ1χ3(b>0),其中二次型f的矩阵A的特征值之和为1,特征值之积为-12.(1)求a、b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正交变换和
随机试题
乙醚全麻时应用阿托品的目的是:
风疹与麻疹的主要鉴别点是
谈论酸梅时引起唾液分泌是
男,55岁。2个月前出现吃干硬食物时有哽噎感、喜软食,且哽噎感越来越明显,查体无阳性体征,钡餐造影见局限性食管管壁僵硬,化验检查无明显异常。首先应考虑的是()
A、黄酮B、二氢黄酮C、异黄酮D、黄酮醇E、黄烷-3-醇下列化合物的结构属于黄芩苷和黄芩素
大气环境影响评价范围的直径或边长一般不应小于()。
关于采购方的违约责任条款,下列说法正确的是( )。
投机方法中,属于建仓阶段内容的是( )。
The"HardOutHere"videohasrackedup(获胜)over27millionsviewstodateonYouTube.Butthemarketforapopstarmakingcleve
(1)Saintsshouldalwaysbejudgedguiltyuntiltheyareprovedinnocent,buttheteststhathavetobeappliedtothemarenot,
最新回复
(
0
)