首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2008年)(Ⅰ)证明积分中值定理:若函数f(χ)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(χ)dχ=f(η)(b-a); (Ⅱ)若函数φ(χ)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫φ(χ)dχ,则至少存
(2008年)(Ⅰ)证明积分中值定理:若函数f(χ)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(χ)dχ=f(η)(b-a); (Ⅱ)若函数φ(χ)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫φ(χ)dχ,则至少存
admin
2016-05-30
40
问题
(2008年)(Ⅰ)证明积分中值定理:若函数f(χ)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫
a
b
f(χ)dχ=f(η)(b-a);
(Ⅱ)若函数φ(χ)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫φ(χ)dχ,则至少存在一点ξ∈(1,3),使得φ〞(ξ)<0.
选项
答案
(Ⅰ)设M与m是连续函数f(χ)在[a,b]上的最大值与最小值,即 m≤f(χ)≤M,χ∈[a,b] 由定积分性质,有m(b-a)≤∫
a
b
f(χ)dχ≤M(b-a) 即m≤[*]f(χ)dχ≤M 由连续函数介值定理,至少存在一点η∈[a,b],使得f(η)=[*]f(χ)dχ, 即∫
a
b
f(χ)dχ=f(η)(b-a) (Ⅱ)由(Ⅰ)的结论,可知至少存在一点η∈[2,3],使 ∫
2
3
φ(χ)dχ=φ(η)(3-2)=φ(n) 又由φ(2)>∫
2
3
φ(χ)dχ=φ(η)知,2<η≤3. 对φ(χ)在[1,2]和[2,η]上分别应用拉格朗日中值定理,并注意到φ(1)<φ(2),φ(η)<φ(2),得 [*] 在[ξ
1
,ξ
2
]上对导函数φ′(χ)应用拉格朗日中值定理,有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vK34777K
0
考研数学二
相关试题推荐
设生产某产品的固定成本为10,而当产量为x时的边际成本函数为MC=-40-20x+3x2,边际收益函数为MR=32+10x,则总利润函数L(x)=________.
设函数y=y(x)由方程组所确定,试求t=0
闭区域D由直线x+y=0,x轴和y轴所围成,求函数z=f(x,y)=x2y(4-x-y)在闭区域D上的最小值和最大值.
求星形线,a>0在第一象限内的弧L1与Ox轴,Oy轴所围成图形的面积和形心.
某公司每年的工资总额比上一年增加20%的基础上再追加2百万元,若以Wt表示第t年的工资总额(单位:百万元),则Wt满足的差分方程是________。
(2004年试题,二)设A,B为满足.AB=O的任意两个非零矩阵,则必有().
(1999年试题,一)微分方程y’’一4y=e2x的通解为____________.
(2003年)设函数f(χ)在闭区间[a,b]上连续,在开区间(a,b)内可导,且f′(χ)>0.若极限存在.证明:(1)在(a,b)内f(χ)>0;(2)在(a,b)内存在点ξ,使(3)在(a,b)内存在与(2)中ξ相异的点
(2012年)=_______.
(2012年)设(Ⅰ)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Aχ=β有无穷多解,并求其通解.
随机试题
弘扬中国革命道德传统的重要意义()。
检查勘察、设计单位的营业执照,重点是审查其( )和年检情况。
windows中文版一般已经预先安装了()。
政府对应支付现金的支出改为债券代付,这种发行国债的方法是()。
下列不属于央行货币政策的是()。
职工个人形象与企业整体形象的关系是(一)。
公开选拔前,你一直默默无闻,从来没有担任过领导职务,你能胜任领导职位吗?
下列关于纪要特点的说法中,正确的是()。
俗语,简练而形象化,反映人民生活经验、智慧和愿望。恰当地运用俗语,可以点缀话语、活跃气氛,甚至可以_______、令人警醒。填入画横线部分最恰当的一项是()。
下列关于通气/血流比值的描述,哪项是错误的
最新回复
(
0
)