(2008年)(Ⅰ)证明积分中值定理:若函数f(χ)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(χ)dχ=f(η)(b-a); (Ⅱ)若函数φ(χ)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫φ(χ)dχ,则至少存

admin2016-05-30  40

问题 (2008年)(Ⅰ)证明积分中值定理:若函数f(χ)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(χ)dχ=f(η)(b-a);
    (Ⅱ)若函数φ(χ)具有二阶导数,且满足φ(2)>φ(1),φ(2)>∫φ(χ)dχ,则至少存在一点ξ∈(1,3),使得φ〞(ξ)<0.

选项

答案(Ⅰ)设M与m是连续函数f(χ)在[a,b]上的最大值与最小值,即 m≤f(χ)≤M,χ∈[a,b] 由定积分性质,有m(b-a)≤∫abf(χ)dχ≤M(b-a) 即m≤[*]f(χ)dχ≤M 由连续函数介值定理,至少存在一点η∈[a,b],使得f(η)=[*]f(χ)dχ, 即∫abf(χ)dχ=f(η)(b-a) (Ⅱ)由(Ⅰ)的结论,可知至少存在一点η∈[2,3],使 ∫23φ(χ)dχ=φ(η)(3-2)=φ(n) 又由φ(2)>∫23φ(χ)dχ=φ(η)知,2<η≤3. 对φ(χ)在[1,2]和[2,η]上分别应用拉格朗日中值定理,并注意到φ(1)<φ(2),φ(η)<φ(2),得 [*] 在[ξ1,ξ2]上对导函数φ′(χ)应用拉格朗日中值定理,有 [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/vK34777K
0

最新回复(0)