首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年)设函数y(χ)(χ≥0)二阶可导,且y′(χ)>0,y(0)=1.过曲线y=y(χ)上任意一点P(χ,y)作该曲线的切线及χ轴的垂线,上述两直线与χ轴所围成的三角形的面积记为S1,区间[0,χ]上以y=f(χ)为曲边的曲边梯形面积记为S2,并
(1999年)设函数y(χ)(χ≥0)二阶可导,且y′(χ)>0,y(0)=1.过曲线y=y(χ)上任意一点P(χ,y)作该曲线的切线及χ轴的垂线,上述两直线与χ轴所围成的三角形的面积记为S1,区间[0,χ]上以y=f(χ)为曲边的曲边梯形面积记为S2,并
admin
2016-05-30
52
问题
(1999年)设函数y(χ)(χ≥0)二阶可导,且y′(χ)>0,y(0)=1.过曲线y=y(χ)上任意一点P(χ,y)作该曲线的切线及χ轴的垂线,上述两直线与χ轴所围成的三角形的面积记为S
1
,区间[0,χ]上以y=f(χ)为曲边的曲边梯形面积记为S
2
,并设2S
1
-S
2
恒为1,求此曲线y=y(χ)的方程.
选项
答案
曲线y=y(χ)上点P(χ,y)处切线方程为 y-y=y′(χ)(X-χ) 它与χ轴的交点为(χ-[*],0),由于y′(χ)>0,y(0)=1,从而y(χ)>0,于是 [*] 又S=∫
0
χ
y(t)dt 由条件2S
1
=S
2
=1知 [*] 两边对χ求导并化简得 yy〞=(y′)
2
令y′=P,则上述方程化为 [*] 解得P=C
1
y [*] 注意到y(0)=1,由(*)式可知y′(0)=1,由此可得C
1
=1,C
2
=0,故所求曲线方程为 y=e
χ
解析
转载请注明原文地址:https://kaotiyun.com/show/F734777K
0
考研数学二
相关试题推荐
设z=z(x,y)二阶连续可偏导且满足方程在变换下,原方程化为求a,b的值.
设A,B为三阶矩阵,A~B,λ1=-1,λ2=1为矩阵A的两个特征值,又|B-1|=则=________
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
设y1(x),y2(x)为二阶齐次线性微分方程y”+P(x)y’+q(x)y=0的两个特解,y1≠0,y2≠0,则y=c1y1(x)+c2y2(x)(其中c1,c2为任意常数)为该方程通解的充要条件为().
已知函数z=f(x,y)可微,f(0,0)=0,fx(0,0)=a,fy(0,0)=b,且g(t)=etf(t,f(t,t)),求g’(0)的值.
函数f,g的二阶偏导数均存在,z=f[xy,lnx+g(xy)],求的值.
求极限.
(1999年试题,一)函数在区间上的平均值为__________.
(2003年)设函数y=y(χ)在(-∞,+∞)内具有二阶导数,且y′≠0,χ=χ(y)是y=y(χ)的反函数.(1)试将χ=χ(y)所满足的微分方程=0变换为y=y(χ)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0
(1999年)求初值问题的通解.
随机试题
选择性5-脂氧酶抑制剂是
孕妇缺乏(),会使胎儿的生长发育受到严重影响,以致出生后的“克汀病”,也称“呆小症”。
圆柱形铣刀的后角指在正交平面内测得的后面与()之间的夹角。
输液引起静脉炎时,局部热敷可用
某化工厂发生重大火灾、爆炸事故,死亡15人并摧毁了上亿元的设备。接到事故报告后,厂领导组织采取了如下行动。()行动是不应当采取的。
“备案号”栏应填()。“保费”栏应填()。
《中共中央国务院关于深化教育改革全面推进素质教育的决定》进一步强调指出:“全面推进素质教育,根本上要()来保障”。
现有甲、乙两个水平相当的技术工人需进行三次技术比赛,规定三局两胜者为胜方,如果在第一次比赛中甲获胜,这时乙最终取胜的可能性有多少?()
当教师看到一个学生上课捣乱后,便让该生到走廊里站10分钟。该教师采用的技术是
Itwasonceassumedthatalllivingthingscouldbedividedintotwofundamentalandexhaustivecategories.Multicellularplants
最新回复
(
0
)