首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|,且A,B都可相似对角化,证明:A~B. (2)设A=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|,且A,B都可相似对角化,证明:A~B. (2)设A=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
admin
2019-09-27
30
问题
(1)设A,B为n阶矩阵,|λE-A|=|λE-B|,且A,B都可相似对角化,证明:A~B.
(2)设A=
,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P
-1
AP=B.
选项
答案
(1)因为|λE-A|=|λE-B|,所以A,B有相同的特征值,设为λ
1
,λ
2
,…,λ
n
,因为A,B都可相似对角化,所以存在可逆矩阵P
1
,P
2
,使得 P
1
-1
AP
1
=[*],P
2
-1
BP
2
=[*] 由P
1
-1
AP
1
=P
2
-1
BP
2
得(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 取P
1
P
2
-1
=P,则P
-1
AP=B,即A~B. (2)由|λE-A|=[*]=(λ-1)
2
(λ-2)=0得 A的特征值为λ
1
=2,λ
2
=λ
3
=1; 由|λE-B|=[*]=(λ-1)
2
(λ-2)=0得 B的特征值为λ
1
=2,λ
2
=λ
3
=1. 由E-A=[*]得r(E-A)=1,即A可相似对角化; 再由E-B=[*]得r(E-B)=1,即B可相似对角化,故A~B. 由2E-A→[*]得A的属于λ
1
=2的线性无关特征向量为α
1
=[*]; 由E-A→[*]得 A的属于λ
2
=λ
3
=1的线性无关的特征向量为α
2
=[*] 令P
1
=[*]; 由2E-B→[*]得B的属于λ
1
=2的线性无关特征向量为β
1
=[*]; 由E-B→[*]得 B的属于λ
2
=λ
3
=1的线性无关的特征向量为β
2
=[*], 令P
2
=[*],再令P=P
1
P
2
-1
=[*],则P
-1
AP=B.
解析
转载请注明原文地址:https://kaotiyun.com/show/9ES4777K
0
考研数学一
相关试题推荐
点M(1,一1,2)到平面π:2x—y+5z一12=0的距离为d=_________.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=______.
任意3维向量都可用α1=(1,0,1)T,α2=(1,-2,3)T,α3=(a,1,2)T线性表出,则a=______.
设A为奇数阶矩阵,AAT=ATA=E,|A|>0,则|A-E|=________.
设当x>0时,连续函数f(x)满足,则f(2)=_______.
设A是2阶实对称阵,有特征值λ1=4,λ2=-1,ξ1=[-2,1]T是A对应于λ1的特征向量,β=[3,1]T,则Aβ=______.
与α1=[1,2,3,一1]T,α2=[0,1,1,2]T,α3=[2,1,3,0]T都正交的单位向量是__________.
已知r(A)=r1,且方程组AX=α有解,r(B)=r1,且BY=B无解,设A=[α1,α2,…,αn],B=[β1,β2,…,βn],且r(α1,α2,…,αn,β1,β2,…,βn,β)=r,则()
已知证明A与B合同.
设f(x)在[0,1]上二阶可导,且|f"(x)|≤1(x∈[0,1]),又f(0)=f(1),证明:|f’(x)|≤(x∈[0,1]).
随机试题
反映急性肝细胞损伤的血清酶学检查最敏感的指标是
患者,女,65岁。双膝关节疼痛10余年,加重1年,现仅能在室内扶拐行走。无外伤史,无发热。体格检查,双膝关节内翻伴轻度屈曲挛缩畸形,髌骨活动度差,髌骨周缘及关节间隙压痛,右侧尤其明显。双下肢反射正常。X线片显示双侧膝关节间隙明显变窄,内侧尤甚,关节周围及髌
下列腧穴中,治疗便秘效果较好的是
岩层层面的产状用()表示。
在满足使用的状况下,购买一部车床应选购()较低的。
在三重需要理论中,成就需要高的人具有以下()特点。
下列关于外币资产负债表折算的表述中,不符合企业会计准则规定的有()。
维护社会公平和正义
Architectureisaboutevolution,notrevolution.ItusedtobethoughtthatoncetheRomanspulledoutofBritaininthefifthc
在窗体设计控件组中,代表组合框的图标是
最新回复
(
0
)