首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=______.
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=______.
admin
2018-05-25
46
问题
设A为三阶实对称矩阵,α
1
=(a,-a,1)
T
是方程组AX=0的解,α
2
=(a,1,1-a)
T
是方程组(A+E)X=0的解,则a=______.
选项
答案
1
解析
因为A为实对称矩阵,所以不同特征值对应的特征向量正交,因为AX=0及(A+EX)=0有非零解,所以λ
1
=0,λ
2
=-1为矩阵A的特征值,α
1
=(a, -a,1)
T
,α
2
=(a,1,1-a)
T
是它们对应的特征向量,所以有α
1
T
α
2
=a
2
-a+1-a= 0,解得a=1.
转载请注明原文地址:https://kaotiyun.com/show/9KX4777K
0
考研数学三
相关试题推荐
已知.f(x)二阶可导,且f(x)>0,f(x)fˊˊ(x)-[fˊ(x)]2≥0(x∈R).(1)证明:f(x1)f(x2)≥f2(x1,x2∈R);(2)若f(0)=1,证明:f(x)≥efˊ(0)x(x∈R).
试讨论函数在点x=0处的连续性.
方程y(4)-2ˊˊˊ-3yˊˊ=e-3x-2e-x+x的特解形式(其中a,b,c,d为常数)是()
证明:不等式1+xln(x+),-∞<x<+∞.
设f(x)具有二阶导数,且fˊˊ(x)>0.又设u(t)在区间[0,a](或[a,0])上连续.证明:
已知向量组(Ⅰ)α1,α2,α3,α4线性无关,则与(Ⅰ)等价的向量组是()
设有两个n维向量组(Ⅰ)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=0,则
已知B是n阶矩阵,满足B2=E(此时矩阵B称为对合矩阵).求B的特征值的取值范围.
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是()
设且α,β,γ两两正交,则a=______,b=______.
随机试题
_______________是横断层面上右肺门出现的标志,_______________及其下方的_______________是左肺门出现的标志。
当χ→1时,2sin2(χ-1)是χ-的()。
I型慢性肾炎:Ⅱ型慢性肾炎:
具有生津止渴功效的药物是
女性库欣综合征患者有显著的男性化表现,最可能的诊断是
关于操作风险报告的说法,正确的是()。
根据《企业破产法》的规定,第一次债权人会议以后应当召开债权人会议的情形包括()。
传播环境(南开大学2009年研)
内置计算函数Sum的功能是
台式计算机中的CPU是指:
最新回复
(
0
)