首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=______.
设A为三阶实对称矩阵,α1=(a,-a,1)T是方程组AX=0的解,α2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=______.
admin
2018-05-25
43
问题
设A为三阶实对称矩阵,α
1
=(a,-a,1)
T
是方程组AX=0的解,α
2
=(a,1,1-a)
T
是方程组(A+E)X=0的解,则a=______.
选项
答案
1
解析
因为A为实对称矩阵,所以不同特征值对应的特征向量正交,因为AX=0及(A+EX)=0有非零解,所以λ
1
=0,λ
2
=-1为矩阵A的特征值,α
1
=(a, -a,1)
T
,α
2
=(a,1,1-a)
T
是它们对应的特征向量,所以有α
1
T
α
2
=a
2
-a+1-a= 0,解得a=1.
转载请注明原文地址:https://kaotiyun.com/show/9KX4777K
0
考研数学三
相关试题推荐
设x∈(0,1),证明下面不等式:(1)(1+x)ln2(1+x)<x2;(2)
已知f(x)=是连续函数,求a,b的值.
设函数y(x)(x≥0)二阶可导且yˊ(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及到x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
设函数f(x)在[0,1]上连续,(0,1)内可导,且3f(x)dx=f(0).证明:在(0,1)内存在一点c,使fˊ(c)=0.
设f(x)在(-∞,+∞)内连续,以T为周期,证明:(1)∫aa+Tf(x)dx=∫0Tf(x)dx(a为任意实数);(2)∫0xf(t)dt以T为周期∫0Tf(x)dx=0;(3)∫f(x)dx(即f(x)的全体原函数)周期为Tf(x)dx=0.
设函数f(x)=(x>0),证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+o(x2),并求常数A,B.
设f(x)具有二阶导数,且fˊˊ(x)>0.又设u(t)在区间[0,a](或[a,0])上连续.证明:
设有两个n维向量组(Ⅰ)α1,α2,…,αs,(Ⅱ)β1,β2,…,βs,若存在两组不全为零的数k1,k2,…,ks,λ1,λ2,…,λs,使(k1+λ1)α1+(k2+λ2)α2+…+(ks+λs)αs+(k1-λ1)β1+…+(ks-λs)βs=0,则
设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分条件是()
设且f’’(0)存在,求a,b,c.
随机试题
想象
________,水多菰米岸莓苔。
关于骨骼的MRI特性,正确的是
患者女性,16岁,诊为系统性红斑狼疮,超声心动图检查提示二尖瓣后叶多发细小赘生物,心脏听诊未闻及杂音,首先考虑
瘢痕性类天疱疮在口腔中病损的最常见部位是
硫酸镁中毒时最早出现的是
如果一个瓶内的东西可以被安全地喝下,那么这个瓶子就不会被标为“毒品”,所以,既然一个瓶子没被标为“毒品”,那么它里面的东西就可以被安全地喝下。以下除了哪项外,都犯了与上述论证同样的错误?
What’swrongwiththeman?
A、 B、 C、 D、 D
PASSAGEFOURWhatcanthesuccessofGooglebeascribedtoaccordingtothefirstparagraph?
最新回复
(
0
)