首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是N阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
已知A是N阶矩阵,α1,α2,…,αs是n维线性无关向量组,若Aα1,Aα2,…,Aαs线性相关,证明:A不可逆.
admin
2015-08-14
79
问题
已知A是N阶矩阵,α
1
,α
2
,…,α
s
是n维线性无关向量组,若Aα
1
,Aα
2
,…,Aα
s
线性相关,证明:A不可逆.
选项
答案
因Aα
1
,Aα
2
,…,Aα
s
线性相关,故存在不全为零的数k
1
,k
2
,…,k
s
,使得 k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=0, 即 A(k
1
α
1
+k
2
α
2
+…+k
s
α
s
)=Aξ=0.其中ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
成立,因已知α
1
,α
2
,…,α
s
线性无关,对任意不全为零的k
1
,k
2
,…,k
s
,有 ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0, 而 Aξ=0. 说明线性方程组AX=0有非零解,从而|A|=0,A是不可逆矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/9M34777K
0
考研数学二
相关试题推荐
当x→0+时,下列无穷小中,阶数最高的是().
1n/(n2+n)≤1/(n2+1)+1/(n2+2)+…n/(n2+1)得n2/(n2+n)≤n/(n2+1)+n/(n2-2)+…n/(n2-n)≤n2/(n2+1),
设f(x)=e1/xarctan1/(x2-1),求f(x)的间断点,并判断其类型.
设A=(α1,α2,…,αm),其中α1,α2,…,αm是n维列向量,若对于任意不全为零的常数k1,k2,…,km皆有k1α1+k2α2+…+kmαm≠0,则().
交换积分次序=__________.
当x→0时,f(x)与x2是等价无穷小,其中f(x)连续,f(t)dt与xn是同阶无穷小,则n=()
求极限.
设f(x)在(-∞,+∞)内有定义,且对任意x∈(-∞,+∞),y∈(-∞,+∞),满足f(x+y)=f(x)ey+f(y)ex,f’(0)=a≠0.证明:对任意x∈(-∞,+∞),f’(x)存在,并求f(x).
当x→0时,a(x)=kx2与是等价无穷小,则k=________。
(1998年)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y(从海平面算起)与下沉速度v之间的函数关系,设仪器在重力的作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m,体积为B,海水比重为ρ,仪器所
随机试题
有以下程序#includeintf(intm){staticintn=0;n+=m;returnn;}main(){intn=0;printf("%d,",f(++n));printf("%d\n",
企业进货业务涉及的基本凭证是
(2011年10月)领导工作中经常使用的“解剖麻雀”的方法,属于_____。
A.补肾益气,调理冲任B.理气活血,祛瘀C.养阴清热,调经D.健脾燥湿化痰,活血调经E.以上都不是
根据合伙企业法律制度的规定,下列各项中,有限合伙人不能用作合伙企业出资的有()。
根据下面材料回答问题。截至2011年年末,T市城镇职工基本医疗保险参保人员474.52万人,城乡居民基本医疗保险参保人员498.30万人,城镇职工基本养老保险参保人员458.70万人,城乡居民基本养老保险参保人员97.80万人,失业保险参保职工258.7
行政强制措施由法律、法规或者规章设定。()
标志着拿破仑退出法国政治舞台,也成为以后失败的代名词指的是()。
Cultureisactivityofthought,andreceptivenesstobeautyandhumanefeeling.【C1】________ofinformationhavenothingtodowit
WhatisTRUEaboutBerkin?
最新回复
(
0
)