首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(95年)已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5-α4的秩为4.
(95年)已知向量组(Ⅰ):α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ):α1,α2,α3,α5.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α1,α2,α3,α5-α4的秩为4.
admin
2017-05-26
64
问题
(95年)已知向量组(Ⅰ):α
1
,α
2
,α
3
;(Ⅱ)α
1
,α
2
,α
3
,α
4
;(Ⅲ):α
1
,α
2
,α
3
,α
5
.如果各向量组的秩分别为R(Ⅰ)=R(Ⅱ)=3,R(Ⅲ)=4.证明:向量组(Ⅳ):α
1
,α
2
,α
3
,α
5
-α
4
的秩为4.
选项
答案
因R(Ⅰ)=R(Ⅱ)=3,所以α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,故存在数λ
1
,λ
2
,λ
3
,使得 α
4
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
(*) 设有数k
1
,k
2
,k
3
,k
4
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(α
5
-α
4
)=0 将(*)式代入上式并化简,得 (k
1
-λ
1
k
4
)α
1
+(k
2
-λ
2
k
4
)α
2
+(k
3
-λ
3
k
4
)α
3
+k
4
α
5
=0,由R(Ⅲ)一4知α
1
,α
2
,α
3
,α
5
线性无关,所以 [*] 得k
1
=k
2
=k
3
=k
4
=0,故α
1
,α
2
,α
3
,α
5
-α
4
线性无关,即其秩为4.
解析
转载请注明原文地址:https://kaotiyun.com/show/9RH4777K
0
考研数学三
相关试题推荐
设λo是n阶矩阵A的特征值,且齐次线性方程组(λoE-A)X=0的基础解系为η1,η2,则A的属于λo的全部特征向量为().
已知B是三阶非零矩阵,且BA=0,则RB=_____.
设矩阵则逆矩阵(A一2E)-1=_____.
n阶矩阵A和B有相同的特征值,且都有n个线性无关的特征向量,则不成立的是().
设A是n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是().
球面x2+y2+z2=a2含在x2+y2=ax内部的面积S=().
ln2本题的被积函数是幂函数与指数函数两类不同的函数相乘,应该用分部积分法.[解法一]因为所以而故原式=In2.[解法二]
计算,D:ε2≤x2+y2≤1,并求此积分当ε→0+时的极限.
设A,B为同阶方阵,(1)如果A,B相似,试证A,B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当A,曰均实对称矩阵时,试证(1)的逆命题成立.
设A为3阶矩阵,a1,a2为A的分别属于特征值-1、1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3,求P-1AP.
随机试题
关于健康的描述,正确的为:()
有关AFP升高的临床意义,下列哪项正确
A.肝胆B.肺(统括胸以上至头部)、大肠C.心、小肠D.脾胃(统括膈以下至脐上)“寸口候脏腑”中左寸候
复杂分解爆炸类可爆物的危险性较简单分解爆炸物稍低,其爆炸时伴有燃烧现象,燃烧所需的氧由本身分解产生。下列危险化学品中,属于这一类物质的是()。
40#钢的含义是指平均含碳量为( )。
安全流量是指()时的流量。
消除:矛盾:默契
“创新”作为严格的经济学概念,特指企业以新产品、新服务、新市场、新的管理和商业模式获取利润的行为。根据上述定义,下列不属于经济学概念中的创新的是:
戊戌维新的失败、“戊戌六君子”流血的教训促使一部分人认识到了清朝统治集团的腐朽与顽固,开始走上革命的道路。中国资产阶级革命派与改良派的根本不同之处在于,资产阶级革命派()
现在发信有“伊妹儿”了。不用纸,不用信(1),也不用上(2)局,比以前简单快捷多了。只需用鼠(3)轻轻一点,信就发走了。然而,这轻轻一点,就更容易误发,稍不留心,就会把信误发到不该发的信(4)里去。(2)
最新回复
(
0
)