首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)在[0,+∞)上有二阶连续导数,且f”(x)>0,y=g(x)是y=f(x)在(0,+∞)内任意点x0处的切线方程,F(x)=f(x)-g(x),则( )
设y=f(x)在[0,+∞)上有二阶连续导数,且f”(x)>0,y=g(x)是y=f(x)在(0,+∞)内任意点x0处的切线方程,F(x)=f(x)-g(x),则( )
admin
2022-05-20
44
问题
设y=f(x)在[0,+∞)上有二阶连续导数,且f”(x)>0,y=g(x)是y=f(x)在(0,+∞)内任意点x
0
处的切线方程,F(x)=f(x)-g(x),则( )
选项
A、F(x)在x
0
处取得最大值
B、F(x)在x
0
处取得最小值
C、(x
0
,F(x
0
))为y=F(x)的拐点
D、F(x)在x
0
处不取得极值
答案
B
解析
将F(x)在x
0
处应用泰勒公式,有
F(x)=F(x
0
)+F’(x
0
)(x-x
0
)+1/2!F"(ξ)(x-x
0
)
2
,
其中ξ介于x
0
与x之间.
由已知,F(x
0
)=0,F’(x
0
)=0,F"(ξ)>0,故
F(x)=1/2!F"(ξ)(x-x
0
)
2
≥0,
等号仅在x=x
0
处成立,从而F(x)≥F(x
0
),即x
0
是F(x)在(0,+∞)内唯一的最小值点,B正确.
由F"(x)=f"(x)>0,x∈(0,+∞),知(x
0
,F(x
0
))不是y=F(x)的拐点.
转载请注明原文地址:https://kaotiyun.com/show/9TR4777K
0
考研数学三
相关试题推荐
2
曲线θ=(1≤r≤3)的弧长为________。
设X的概率密度为(I)求a,b的值;(Ⅱ)求随机变量X的分布函数;(Ⅲ)求Y=X3的密度函数.
设f(x),g(x)在[a,b]上二阶可导,g’’(x)≠0,f(a)=f(b)=g(a)—g(b)=0.g(x)≠0.任意x∈(a,b);
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b),且d(x)在[a,b]上不恒为常数.证明:存在ξ,η∈(a,6),使得f’(ξ)>0,f’(η)<0.
求下列极限:
设f(x)∈C[a,b],在(a,b)内二阶可导,且f”(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且φ(x)dx=1.证明:f(x)φ(x)dx≥f[xφ(x)dx].
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=f(x-t)dt,G(x)=xg(xt)dt,则当x→0时,F(x)是G(x)的().
一条生产线的产品成箱包装,每箱的重量是随机的.假设平均重50千克,标准差为5千克.如果用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保证不超载的概率大于0.977.(Φ(2)=0.977.)
设则().
随机试题
甲、乙签订一份买卖合同,后由于丙的原因,造成甲未能履行合同义务。则应当对乙承担违约责任的是()
阑尾的解剖特点是
肾虚不纳之喘证的呼吸特征为
在整体能抑制心脏但无β受体阻滞作用的抗心绞痛药是
A、迎风流泪类药B、视疲劳类药C、耳鸣耳聋类药D、鼻病类药E、喉痹类药杞菊地黄口服液属()
患者,女性,30岁。患系统性红斑狼疮住院。本次住院面部红斑明显,有少许鳞屑。尿常规阴性,肾功能正常,血抗核抗体阳性,抗双链DNA抗体阳性。治疗本病的主要药物是()
国外房地产代理业务的运作方式有:()。
海南每年3月下旬或4月上旬举办的()是融旅游、文化、民俗、体育、经贸于一体的大型旅游文化节庆活动。
第一次刺激能缓解第二次的小刺激.这种规律称为“贝勃规律”。它表明当人经历强烈的刺激后,之后施与的刺激对他来说会变得微不足道。根据上述定义,下列能用贝勃规律进行解释的是:
OfalltheemployedworkersintheUnitedStates,12.5millionarepartofatemporaryworkforce.TheUnitedStatesBureauofLa
最新回复
(
0
)