首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵 其中A*是A的伴随矩阵,E为n阶单位矩阵。 (Ⅰ)计算并化简PQ; (Ⅱ)证明矩阵Q可逆的充分必要条件是α2A—1α≠b。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵 其中A*是A的伴随矩阵,E为n阶单位矩阵。 (Ⅰ)计算并化简PQ; (Ⅱ)证明矩阵Q可逆的充分必要条件是α2A—1α≠b。
admin
2017-12-29
80
问题
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵
其中A
*
是A的伴随矩阵,E为n阶单位矩阵。
(Ⅰ)计算并化简PQ;
(Ⅱ)证明矩阵Q可逆的充分必要条件是α
2
A
—1
α≠b。
选项
答案
(Ⅰ)由AA
*
=A
*
A=|A|E及A
*
=|A|A
—1
有 [*] (Ⅱ)由下三角形行列式及分块矩阵行列式的运算,有 [*] =|A|
2
(b一α
T
A
—1
α)。 因为矩阵A可逆,行列式|A|≠0,故|Q|=|A|(b一α
T
A
—1
α)。 由此可知,Q可逆的充分必要条件是b—α
T
A
—1
α≠0,即α
T
A
—1
α≠b。
解析
转载请注明原文地址:https://kaotiyun.com/show/9UX4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn,…是独立同分布的随机变量序列,E(Xi)=μ,D(Xi)=σ2,i=1,2,…,令证明:随机变量序列{Yn}依概率收敛于μ.
设A是3阶矩阵,|A|=3,且满足|A2+2A|=0,|2A2+A|=0,则A*的特征值是________.
设n阶矩阵A的秩为1,证明:A可以表示成n×1矩阵和1×n矩阵的乘积;
设n维向量α1,α2,α3满足2α1一α2+3α3=0,对于任意的n维向量β,向量组l1β+α1,l1β+α2,l3β+α3都线性相关,则参数l1,l2,l3应满足关系________.
已知某商品的需求量D和供给量S都是价格p的函数;D=D(p)=,S=S(p)=bp,其中a>0和b>0为常数;价格p是时间t的函数且满足方程=k[D(p)一S(p)](k为正的常数).假设当t=0时价格为1,试求
设函数f(x)有连续导数,F(x)=∫0xf(t)f’(2a—t)dt。证明:F(ga)-2F(A)=f2(A)-f(0)f(2a).
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数。试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程
设随机变量X1,X2,X3,X4相互独立且同分布,P(Xi=0)=0.6,P(Xi=1)=0.4(i=1,2,3,4)。求行列式的概率分布。
设X,y为两个随机变量,其中E(X)=2,E(y)=-1,D(X)=9,D(Y)=16,且X,Y的相关系数为ρ=,由切比雪夫不等式得P{|X+Y一1|≤10}≥().
随机试题
不与壮热并见的症状是
关于局部兴奋,正确的是
患者,男,56岁。反复上腹胀痛1年,进食后呕吐1个月,呕吐物含有宿食。体格检查:贫血貌,消瘦,上腹可见胃型,可闻及振水音。患者最早出现的酸碱平衡失调和水、电解质紊乱的类型是()
A、张口受限,咀嚼时痛,口内上颌结节后方有压痛B、张口受限,吞咽时痛,悬雍垂偏向健侧C、张口受限,咀嚼时痛加剧,并向耳颞部反射D、张口极度困难,患侧下颌支后缘内侧皮肤肿胀并有深部压痛E、牙关紧闭,颈强直颞深间隙感染临床表
胆总管探查术后所置的T形引流管拔除指征中,下列哪项错误
甲公司与乙公司因合同发生纠纷,双方根据仲裁协议向北京市仲裁委员会仲裁。仲裁委审理作出裁决后,甲公司提出请求认为乙公司向仲裁委提交了伪造的证据但仲裁委却据此做出了裁决,于是请求法院撤销仲裁裁决,法院受理后查明甲公司所称属实,于是裁定撤销仲裁裁决。下列说法哪些
某机电安装公司承接某工厂建设项目的主厂房、生产用锅炉房等机电安装工程。其中主厂房需要安装的机电设备中动设备不多,主要是容器类的静设备和工艺管线、电气动力、照明等;生产用锅炉安装的技术文件规定,锅筒与对流管连接方法采用焊接。该公司项目经理部在组织制
在灭火器箱外观质量检查中,经游标卡尺实测检查,翻盖式灭火器箱箱盖在正面凸出不超过()。
在资本资产定价模型中,资本市场没有摩擦的假设是指( )。
一位司机是资深爱狗人士,在高速公路上为避让一只突然蹿出的小狗,车辆发生侧翻。导致副驾驶座位上的人员受伤,经初步评估,他共计要赔偿32万元。假如你是处理该起事故的交警,同时你也是一位爱狗人士。你会如何处理?
最新回复
(
0
)