首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0, 试证这三条直线交于一点的充分必要条件为a+b+c=0。
已知平面上三条不同直线的方程分别为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0, 试证这三条直线交于一点的充分必要条件为a+b+c=0。
admin
2018-12-29
62
问题
已知平面上三条不同直线的方程分别为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0,
l
3
:cx+2ay+3b=0,
试证这三条直线交于一点的充分必要条件为a+b+c=0。
选项
答案
先证必要性。设三条直线l
1
,l
2
,l
3
交于一点,则其线性方程组 [*] 有唯一解,故系数矩阵A=[*]与增广矩阵[*]的秩均为2,于是[*]=0。 因为 [*] =6(a+b+c)(a
2
+b
2
+c
2
—ab—ac—bc) =3(a+b+c)[(a—b)
2
+(b—c)
2
+(c—a)
2
], 但根据题设可知(a—b)
2
+(b—c)
2
+(c—a)
2
≠0,故a+b+c=0。 再证充分性。由a+b+c=0,则从必要性的证明中可知,[*]。由于 [*]=2(ac—b
2
)=[*]≠0, 故r(A)=2。于是r(A)=[*]=2。 因此方程组(1)有唯一解,即三条直线l
1
,l
2
,l
3
交于一点。
解析
转载请注明原文地址:https://kaotiyun.com/show/9WM4777K
0
考研数学一
相关试题推荐
设随机变量X的分布函数为F(x)=则a=______,b=_____,c=______.
设X,Y为两个随机变量,P{X≤1,Y≤1}=,P{X≤1}=P{Y≤1}=,则P(min{X,Y}≤1}=()
曲线f(x)=x2+6x+1上点(0,1)处的切线与x轴交点的坐标为()
设∑={(x,y,z)|x2+y2+z2=R2,z≥0},Dxy={(x,y)|x2+y2≤R2},对于下列三个等式说法正确的是()
边长为am的等边倒三角形闸门,当水面正好淹没闸门时,闸门上所受水的压力为______(其中水的密度为ρ).
计算n阶行列式:Dn==______.
设曲线积分其中L为平面上任意一条分段光滑闭曲线,且P(x,y)=2[xφ(y)+ψ(y)],Q(x,y)=x2ψ(y)+2xy2一2xφ(y).其中φ(y)、ψ(y)在R’内有连续的导数,且φ(0)=一2,ψ(0)=1.求曲线积分
设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω.求曲面∑的方程;
设随机变量X与Y相互独立,且均服从(-1,1)上的均匀分布.试求X和Y的联合分布函数;
每次从1,2,3,4,5中任取一个数,且取后放回,用bi表示第i次取出的数(i=1,2,3).三维列向量b=(b1,b2,b3)T,三阶方阵求线性方程组Ax=b有解的概率.
随机试题
关于颈交感干的描述,错误的是
前置胎盘时,期待疗法适用于:
人为风险存在于药品的哪些环节
某县公安局以涉嫌盗窃将何某刑事拘留,3个月后决定撤销案件并将何某释放。何某向某县公安局提出国家赔偿请求。下列哪一项说法是正确的?()
已知=()。
( )在工程项目施工中处于中心地位,对工程项目施工进行全面管理。
人民法院可以根据具体情况对不同的证据采用不同的保全方法,下列行为不是证据保全方法的是( )。
关于任意公积金,下列说法正确的是()
一块黑板擦放在水平的讲台面上,以下关于这块黑板擦所涉及的物理知识的叙述中,说法不正确的是()。
【B1】【B9】
最新回复
(
0
)