首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设连接两点A(0,1)与B(1,0)的一条凸弧,点P(x,y)为凸弧AB上的任意一点.已知凸弧与弦AP之间的面积为x3,求此凸弧的方程.
设连接两点A(0,1)与B(1,0)的一条凸弧,点P(x,y)为凸弧AB上的任意一点.已知凸弧与弦AP之间的面积为x3,求此凸弧的方程.
admin
2017-05-31
61
问题
设连接两点A(0,1)与B(1,0)的一条凸弧,点P(x,y)为凸弧AB上的任意一点.已知凸弧与弦AP之间的面积为x
3
,求此凸弧的方程.
选项
答案
设凸弧的方程为y=f(x),P(x,f(x)),则过P作x轴的垂线与x轴的交点为C(x,0),因梯形OAPC的面积为[*] 又因为凸弧为光滑的曲线,所以它是可导的. 两边对x求导,得y=f(x)所满足的微分方程xy’一y=一6x
2
—1,即[*]则其通解为[*]其中c为任意常数. 由题设知,曲线过点B(1,0),即y(1)=0.代入通解中,得c=5,故所求曲线为y=5x一6x
2
+1.
解析
转载请注明原文地址:https://kaotiyun.com/show/9eu4777K
0
考研数学一
相关试题推荐
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b),使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
求极限1+cot2x.
设(x0,y0)是抛物线y=ax2+bx+c上的一点,若在该点的切线过原点,则系数应满足的关系是_______.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y"+P(x)y’+q(x)y=f(x)的解,C1,C2是任意常数,则该非齐次方程的通解是
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
计算曲面积分,其中S是,z=1及z=2所围的封闭曲面的外侧.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0,试应用拉格朗日中值定理证明不等式:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设总体X的分布函数为F(x),(X1,X2,…,Xn)是取自此总体的一个子样,若F(x)的二阶矩阵存在,为子样均值,试证(Xi-)与(Xj-)的相关系数j=1,2,…,n.
函数u=ln(x2+y2+z2)在点M(1,2,-2)处的梯度gradu|M=__________.
随机试题
测定影响利润的各因素敏感程度的指标称为()
各类器官移植中疗效最稳定和最显著的是
临床上将尿道的哪部分称为前尿道
下列对出血坏死性胰腺炎最具诊断价值的是
公司制期货交易所采用股份制,以营利为目的,其人员可以参与期货交易。()
有些具有良好效果的护肤化妆品是诺亚公司生产的。所有诺亚公司生产的护肤化妆品都价格昂贵,而价格昂贵的护肤化妆品无一例外地受到女士们的信任。以下各项都能从题干的断定中推出,除了()。
阅读下面这首诗,回答问题。商山早行温庭筠晨起动征铎,客行悲故乡。鸡声茅店月,人迹板桥霜。槲叶落山路,枳花明驿墙。因思杜陵梦,凫雁满回塘。前
弃婴安全岛帮助了更多身体有残疾的婴幼儿,但是近期被丢弃的婴儿越来越多,让安全岛无力承担。而社会上对于婴儿安全岛也是褒贬不一,对此你怎么看?
BOON:
Inlastweek’sTribune,therewasaninterestingletterfromMr.J.StewartCook,inwhichhesuggestedthatthebestwayofavo
最新回复
(
0
)