首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(Ⅰ):α1=(2,4,-2)T,α2=(-1,a-3,1)T,α3=(2,8,b-1)T;(Ⅱ):β1=(2,b+5,-2)T,β2=(3,7,a-4)T,β3=(1,2b+4,-1)T.问. a,b取何值时,r(Ⅰ)=r(Ⅱ),但(Ⅰ)与(Ⅱ
设向量组(Ⅰ):α1=(2,4,-2)T,α2=(-1,a-3,1)T,α3=(2,8,b-1)T;(Ⅱ):β1=(2,b+5,-2)T,β2=(3,7,a-4)T,β3=(1,2b+4,-1)T.问. a,b取何值时,r(Ⅰ)=r(Ⅱ),但(Ⅰ)与(Ⅱ
admin
2021-02-25
93
问题
设向量组(Ⅰ):α
1
=(2,4,-2)
T
,α
2
=(-1,a-3,1)
T
,α
3
=(2,8,b-1)
T
;(Ⅱ):β
1
=(2,b+5,-2)
T
,β
2
=(3,7,a-4)
T
,β
3
=(1,2b+4,-1)
T
.问.
a,b取何值时,r(Ⅰ)=r(Ⅱ),但(Ⅰ)与(Ⅱ)不等价?
选项
答案
当a=1,b≠-1时,r(Ⅰ)=r(Ⅱ)=2,但r(Ⅰ)≠r(Ⅰ,Ⅱ)=3,故(Ⅰ)与(Ⅱ)不等价. 当a≠1,b=-1时,仍有r(Ⅰ)=r(Ⅱ)=2,但r(Ⅰ)≠r(Ⅰ,Ⅱ)=3,故(Ⅰ)与(Ⅱ)也不等价. 综上可知,当a≠1,且b≠-1,或a=1,且b=-1时,r(Ⅰ)=r(Ⅱ),从而(Ⅰ)与(Ⅱ)等价;当a=1,且b≠-1或a≠1,且b=-1时,r(Ⅰ)=r(Ⅱ),但(Ⅰ)与(Ⅱ)不等价.
解析
转载请注明原文地址:https://kaotiyun.com/show/9i84777K
0
考研数学二
相关试题推荐
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a1能由a2,a3线性表示;
设χy=χf(χ)+yg(z),且χf′(z)+yg′(z)≠0,其中z=z(χ,y)是z,y的函数.证明:[z-g(z)]=[y-f(z)].
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设A,B和C都是n阶矩阵,其中A,B可逆,求下列2n阶矩阵的伴随矩阵.
设函数,数列{xn}满足lnxn+<1。证明xn存在,并求此极限。[img][/img]
设自动生产线加工的某种零件的内径X(单位:mm)服从正态分布N(μ,1),内径小于10mm或大于12mm为不合格品,其余为合格品.销售合格品获利,销售不合格品亏损,已知一个零件的销售利润T元与X有如下关系:T=,问平均内径μ取何值时,销售一个零件的平均获利
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
随机试题
衍生金融工具包括()
股份公司发行公司债可以()。
Idon’tthinkMaryunderstoodwhatyousaid,______?
A.新药B.上市药品C.特殊管理药品D.国家基本药物E.基本医疗保险用药我国境内未曾上市销售的药品为
受伤8h内未经处理的开放性损伤是()
动物表现排粪带痛,不提示
对左旋多巴的叙述错误的是
PDCA循环中C(Check)包括了()。
老龄化社会,养老不仅是“家事”,也是“国事”“天下事”。稳固“孝”的精神磐石,要靠道德。而一旦道德防线失守,就只能靠法律来守住最后的底线。作为“最低的道德”,法律虽然不能让人主动行善,却能禁止最严重的违规行为。换言之,法律虽不能让“甩老族”受到感化,从而发
能够检查字段中的输入值是否合法的属性是( )。
最新回复
(
0
)