首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
admin
2014-07-06
39
问题
已知η
1
,η
2
,η
3
,η
4
是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
选项
A、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
.
B、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
+η
1
.
C、η
1
+η
2
,η
2
+η
3
,η
3
一η
4
,η
4
一η
1
.
D、η
1
,η
2
,η
3
,η
4
的等价向量组.
答案
A
解析
等价向量组不能保证向量个数相同,因而不能保证线性无关,例如向量组η
1
,η
2
,η
3
,η
4
,η
1
+η
2
与向量组η
1
,η
2
,η
3
,η
4
呀4等价,但前者线性相关,因而不能是基础解系。故D不正确。B,C均线性相关,因此不能是基础解系,故B与C也不正确.注意到:(η
1
+η
2
)一(η
2
一η
3
)一(η
3
一η
4
)一(η
4
+η
1
)=0,(η
1
+η
2
)一(η
2
+η
3
)+(η
3
一η
4
)+(η
4
~η
1
)=0,唯有A,η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
是Ax=0的解,义由(η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
)=(η
1
,η
2
,η
3
,η
4
)
且
=2≠0,知η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
线性无关,且向量个数与η
1
,η
2
,η
3
,η
4
相同.所以A也是Ax=0的基础解系.故选A.
转载请注明原文地址:https://kaotiyun.com/show/9u54777K
0
考研数学一
相关试题推荐
设z=f(u)具有二阶连续导数,u=lnr,r=,满足(x2+y2),f(0)=0,f’(0)=2,求f(u)的表达式.
设函数f(x)在区间[0,1]上二阶可导,f(0)=0,且f(1)=1,证明:存在x0∈(0,1),使得f’(x0)=1;
设函数f(x)在区间(0,+∞)内有定义,且对于任意的x∈(0,+∞),y∈(0,+∞),有f(xy)=f(x)+f(y)+(x-1)(y-1),又设f’(1)存在且等于a,a≠1.求f(x)的表达式.
求函数g(x,y,z)=的最大值,并求出一个最大值点.
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点.若极径OM0、OM与曲线L所围成的曲边扇形面积值等于L上M0、M两点间弧长值的一半,求曲线L的方程.
设f(x)在[a,b]上连续,在(a,b)内可导(0≤a≤b≤).证明:存在ξ,η∈(a,b),使得.
设A是三阶矩阵,且特征值为λ1=1,λ2=一1,λ3=2,A*是A的伴随矩阵,E是三阶单位阵,则=________。
设c>0,且函数f(x)=在(-∞,+∞)内连续,则c=________.
当x→0时,f(x)=ax3+bx与g(x)=∫0sinx(-1)dt是等价无穷小,则()。
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充要条件为().
随机试题
差别计件工资制
23岁,女性。深吸气状态下X线胸片上测量心胸比例为0.59,则认为该患者的心脏为
将光或其他能量携带的被照体的信息状态以二维形式加以记录,并表现为可见光学影像的技术是
患者,妊娠7周。早孕反应严重,恶心、呕吐,人流后一周,无阴道流血,无腹痛,但恶心,呕吐持续存在,查尿妊娠试验(+),最可能诊断
进出口货物放行后,由于海关方面的原因造成少征或漏征税款,海关应当自缴纳税款或者货物放行之日起()内,向收发货人或者他们的代理人补征。
下列关于政府补助的说法,错误的是()。
录用人民警察考核是在考试的基础上进行的,其对象是所有参加考试者。()
下列选项中,可以适用于动产的制度有()。
社会主义的优越性可以体现在生产资料公有制等多个方面,但最大的优越性就是()
WithinEUprimaryeducation,aclearmajorityofpupilschoosetostudyEnglishlikeaforeignlanguage.Indeed,learningEnglis
最新回复
(
0
)