首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
admin
2014-07-06
83
问题
已知η
1
,η
2
,η
3
,η
4
是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
选项
A、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
.
B、η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
+η
1
.
C、η
1
+η
2
,η
2
+η
3
,η
3
一η
4
,η
4
一η
1
.
D、η
1
,η
2
,η
3
,η
4
的等价向量组.
答案
A
解析
等价向量组不能保证向量个数相同,因而不能保证线性无关,例如向量组η
1
,η
2
,η
3
,η
4
,η
1
+η
2
与向量组η
1
,η
2
,η
3
,η
4
呀4等价,但前者线性相关,因而不能是基础解系。故D不正确。B,C均线性相关,因此不能是基础解系,故B与C也不正确.注意到:(η
1
+η
2
)一(η
2
一η
3
)一(η
3
一η
4
)一(η
4
+η
1
)=0,(η
1
+η
2
)一(η
2
+η
3
)+(η
3
一η
4
)+(η
4
~η
1
)=0,唯有A,η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
是Ax=0的解,义由(η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
)=(η
1
,η
2
,η
3
,η
4
)
且
=2≠0,知η
1
+η
2
,η
2
一η
3
,η
3
一η
4
,η
4
一η
1
线性无关,且向量个数与η
1
,η
2
,η
3
,η
4
相同.所以A也是Ax=0的基础解系.故选A.
转载请注明原文地址:https://kaotiyun.com/show/9u54777K
0
考研数学一
相关试题推荐
一容器内表面是由曲线y=x2(0≤x≤2,单位:m)绕y轴旋转一周所得到的曲面,现以2m3/min的速率注入某液体,求:当液面升高到1m时液面上升的速率.
设函数f(x)在区间(0,+∞)内有定义,且对于任意的x∈(0,+∞),y∈(0,+∞),有f(xy)=f(x)+f(y)+(x-1)(y-1),又设f’(1)存在且等于a,a≠1.证明对任意的x∈(0,+∞),f’(x)存在,并求f’(x);
设函数f(x)在区间(0,+∞)内有定义,且对于任意的x∈(0,+∞),y∈(0,+∞),有f(xy)=f(x)+f(y)+(x-1)(y-1),又设f’(1)存在且等于a,a≠1.求f(x)的表达式.
设A=,B=,且矩阵方程AX=B有无穷多解.求常数a,b,c的值;
设A=,B=,且矩阵方程AX=B有无穷多解.求X.
曲线x2/3+y2/3=a2/3(a>0)绕x轴旋转一周所得到的旋转体的体积V=()
设A为m×n矩阵,r(A)=n,则下列结论不正确的是()
讨论函数g(x)=在x=0处的连续性。
当x→0时,-1与sin2x为等价无穷小,求a.
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x)其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程。
随机试题
根据《社会保险法》,下列参加职工基本医疗保险人员的医疗费用中,由基本医疗保险基金支付的有()。
江城子.乙亥正月二十日夜记梦苏轼十年生死两茫茫,不思量,自难忘。千里孤坟,无处话凄凉。纵使相逢应不识,尘满面,鬓如霜。夜来幽梦忽还乡,小轩窗,正梳妆。相顾无言,惟有泪千行。
关于化脓性胆管炎的声像图特点,不正确的是
常见钡剂造影胃的形态不包括
A、联合卡环B、对半卡环C、圈形卡环D、回力卡环E、三臂卡环单侧牙缺失较多,需对侧辅助固位的卡环是
急性心肌梗死病人吸氧的目的是( )。【历年考试真题】
在动画片的题材中,童话、神话、民间故事占了很大的比例,就是因为这些题材都是带有浓厚幻想色彩的______故事,具有鲜明的_______、假定与象征的因素,神奇虚幻的故事借助动画的假定性不仅可以得到淋漓尽致的表现,而且动画艺术的特性也能够得以充分发挥。依次填
下列关于双因素理论的说法,错误的是()。
HowdoesReevefeelinacrisis?
【B1】【B12】
最新回复
(
0
)