首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。 证明:r(A)=2;
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。 证明:r(A)=2;
admin
2018-04-12
55
问题
设3阶矩阵A=(α
1
,α
2
,α
3
)有3个不同的特征值,且α
3
=α
1
+2α
2
。
证明:r(A)=2;
选项
答案
因为A有三个不同的特征值,所以A至多只有1个零特征值,故r(A)≥2。又因为α
3
=α
1
+2α
2
,所以矩阵A的列向量组线性相关,故r(A)≤2。从而r(A)=2。
解析
矩阵有3个不同的特征值,说明矩阵至多只有1个零特征值,从而可得r(A)≥2,再结合矩阵列向量组线性相关即可证明r(A)=2;
转载请注明原文地址:https://kaotiyun.com/show/ADk4777K
0
考研数学二
相关试题推荐
设函数y(x)由参数方程确定,求曲线y=y(x)向上凸的x取值.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f(x)单调减少;且f(1)=f’(1)=1,则
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>O,令μn=f(n)(n=1,2,…),则下列结论正确的是
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.写出f(x)在[-2,0)上的表达式;
求微分方程y’=y(1-x)/x的通解。
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;
已知二次型f(x1,x2,x3)=4x2-3x3+4x1x2-4x1x3+8x2x3.用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.求实数n的值;
(2008年试题,22)设n元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
随机试题
湖水的DDT浓度为0.09mg/L,在吃鱼的水鸟体内,DDT浓度会高达98mg/L,比湖水中的DDT浓度高出一千多倍。这是生物富集放大作用的表现。()
某省人大常委会公布实施了《某省安全生产条例》,随后省政府公布实施了《某省生产经营单位安全生产主体责任规定》,下列关于两者法律地位和效力的说法中,正确的是()
在某工程双代号网络计划中,工作N的最早开始时间和最迟开始时间分别为第20天和第25天,其持续时间为9天。该工作有两项紧后工作,它们的最早开始时间分别为第32天和第34天,则工作N的总时差和自由时差分别为( )天。
Ahouseisthemostexpensivethingmostpeoplewilleverbuy.Veryfewpeoplehaveenoughmoneyoftheirowntobuyahouse,so
蜘蛛:螃蟹
关于死锁的银行家算法是围绕“安全状态”的概念工作的。当系统预测到不安全状态时,就拒绝分配资源,但是,银行家算法要求的条件并不是必要的。例如,某系统有12个资源供进程P0、P1、P2使用。目前的分配情况如下:请说明系统并不一定死锁。
数据库性能优化是数据库应用系统上线后最常见的运行维护任务之一。下列有关数据库性能优化的说法,错误的是()。
WhenAthesunissettinginShanghai,NewYorkBisjustemergingCintosunlightontheDsideoppositeoftheworld.
A、Copyingandpastingpicturesonyourpersonalhomepage.B、Sanitizingyourphotosbeforeputtingthemonline.C、Blacklistingal
TheIndustrialRevolution[A]TheIndustrialRevolutionisthenamegiventothemassivesocial,economic,andtechnologicalchan
最新回复
(
0
)