首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有三条直线l1:a1x+b1y=c1,l2:a2x+b2y=c2,l3:a3x+b3y=c3,其中ai,bi,ci≠0(i=1,2,3),记,则r(A)=2是三条直线相交于一点的( ).
设有三条直线l1:a1x+b1y=c1,l2:a2x+b2y=c2,l3:a3x+b3y=c3,其中ai,bi,ci≠0(i=1,2,3),记,则r(A)=2是三条直线相交于一点的( ).
admin
2021-07-27
53
问题
设有三条直线l
1
:a
1
x+b
1
y=c
1
,l
2
:a
2
x+b
2
y=c
2
,l
3
:a
3
x+b
3
y=c
3
,其中a
i
,b
i
,c
i
≠0(i=1,2,3),记
,则r(A)=2是三条直线相交于一点的( ).
选项
A、充分必要条件
B、充分而非必要条件
C、必要而非充分条件
D、既非必要也非充分条件
答案
C
解析
依题意,我们要寻求的是三条直线相交于一点的条件,也即线性方程组
有唯一解的条件.根据方程组理论,该方程组有唯一解的充分必要条件是r(A)=r(A)=2,题设条件r(A)=2只是其中必要条件,因此,可以判定选项(C)符合题设,故选之.
转载请注明原文地址:https://kaotiyun.com/show/AHy4777K
0
考研数学二
相关试题推荐
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问当t为何值时,向量组α1,α2,α3线性无关?(2)问当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α3表示为α1和α2的线
在区间[0,a]上|f"(x)|≤M,且f(x)在(0,a)内取得极大值.证明:|f’(0)|+|f’(a)|≤Ma.
设函数f(x)连续,下列变上限积分函数中,必为偶函数的是().
设f(x)在[a,b]连续,则f(x)在[a,b]非负且在[a,b]的任意子区间上不恒为零是F(x)=∫ax(t)dt在[a,b]单调增加的()
设f(x),f’(x)为已知的连续函数,则方程y’+f’(x)y=f(x)f’(x)的通解是()
设f(x,y),g(x,y)在平面有界闭区域D上连续,且g(x,y)≥0.证明:存在(ξ,η)∈D,使得
设抛物线y=ax2+bx+2lnc过原点,当0≤x≤1时,y≥0,又已知该抛物线与x轴及直线x=1所围图形的面积为1/3.试确定a,b,c,使此图形绕x轴旋转一周而成的旋转体的体积V最小.
如图所示,函数f(x)是以2为周期的连续周期函数,它在[0,2]上的图形为分段直线,g(x)是线性函数,则=.
设f(x)为[0,1]上的单调增加的连续函数,证明:.
设曲线y=,过原点作曲线的切线,求此曲线、切线及χ轴所围成的平面图形绕χ轴旋转一周所成的旋转体的表面积.
随机试题
下述关于恶性肿瘤特点的叙述,恰当的为
李某,男,无意中发现耳下区增大,无压痛,亦无明显不适,超声显示:耳下方见圆形无回声区,直径0.7cm,形态规则,后方回声增强,周围见腮腺组织,最有可能的诊断是:
Glickman的Ⅱ度根分叉病变是指()
高血压病时,细小动脉硬化的病理改变是()
关于该案的立案,以下说法正确的是()。关于李军案第一审管辖,以下说法正确的是()。
关于偷窃行为原因的陈述,错误的是()。[2008年真题]
教育的基本特点是培养人。()
弗洛伊德把人格看作是一个由本我、_______和_______三个心理结构组成的动力系统。
远东地区最大、最先进的啤酒厂里,有一台电机默默运转带动生产,一瓶瓶_______的啤酒鱼贯产出。转眼109年已逝,这台老电机虽已停运,但仍_______地置于原地,成为青岛啤酒博物馆的“镇馆之宝”,讲述着它与青岛啤酒跨越一个世纪的_______。在博物馆里
在采用CSMA/CD控制方式的总线网络上,设有N个节点,每个节点发送帧的概率为9,则某个指定节点发送成功的概率为______。
最新回复
(
0
)