首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,p1,p2,p3是线性无关的3维列向量,且满足Ap1=p1+p2+p3,Ap2=2p2+p3,Ap2=2p2+3p3.(1)求矩阵B使得A(p1,p2,p3)=(p1,p2,p3)B;(2)求矩阵A的特征值;(3)求可逆矩阵P,使得P﹣1A
设A为3阶矩阵,p1,p2,p3是线性无关的3维列向量,且满足Ap1=p1+p2+p3,Ap2=2p2+p3,Ap2=2p2+3p3.(1)求矩阵B使得A(p1,p2,p3)=(p1,p2,p3)B;(2)求矩阵A的特征值;(3)求可逆矩阵P,使得P﹣1A
admin
2020-06-05
32
问题
设A为3阶矩阵,p
1
,p
2
,p
3
是线性无关的3维列向量,且满足Ap
1
=p
1
+p
2
+p
3
,Ap
2
=2p
2
+p
3
,Ap
2
=2p
2
+3p
3
.(1)求矩阵B使得A(p
1
,p
2
,p
3
)=(p
1
,p
2
,p
3
)B;(2)求矩阵A的特征值;(3)求可逆矩阵P,使得P
﹣1
AP为对角矩阵.
选项
答案
(1)根据已知条件,有 A(p
1
,p
2
,p
3
)=(Ap
1
,Ap
2
,Ap
3
) =(p
1
+p
2
+p
3
,2p
2
+p
3
,2p
2
+3p
3
) =(p
1
,p
3
,p
3
)[*] 于是所求矩阵 B=[*] (2)因为p
1
,p
2
,p
3
线性无关,矩阵P
1
=(p
1
,p
2
,p
3
)可逆,所以P
1
﹣1
AP
1
=B,进而A与B相似,也就是说A与B具有相同的特征值.又矩阵B的特征多项式 |B-2E|=[*] =﹣(λ-1)
2
(λ-4) 得矩阵B的特征值是1,1,4,因此矩阵A的特征值也是1,1,4. (3)对矩阵B,当λ
1
=λ
2
=1,解方程(B-E)x=0.由 B-E=[*] 得基础解系q
1
=(﹣1,1,0)
T
,q
2
=(﹣2,0,1)
T
. 当λ
3
=4时,解方程(B-4E)x=0.由 B-4E=[*] 得基础解系q
3
=(0,1,1)
T
. 若令Q=(q
1
,q
2
,q
3
),则有Q
﹣1
BQ=[*]=diag(1,1,4),结合矩阵A于B的关系可得 Q
﹣1
P
1
﹣1
AP
1
Q=[*]=diag(1,1,4).故当 P=P
1
Q=(p
1
,p
2
,p
3
)[*] =(﹣p
1
+p
2
,﹣2p
1
+p
3
,p
2
+p
3
) 时,P
﹣1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ANv4777K
0
考研数学一
相关试题推荐
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布,记求U和V的相关系数ρ。
设y=y(x)由y=tan(x+y)所确定,试求y’,y".
若n阶可逆矩阵A的属于特征值λ的特征向量是α,则在下列矩阵中,α不是其特征向量的是()
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则().
设A为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如图所示,则A的正特征值的个数为]()
设向量组I:α1,α2,...,αr可由向量组Ⅱ:β1,β2,...,βs线性表示,则
n阶矩阵A和B具有相同的特征值是A和B相似的()
设y=y(x)是二阶线性常系数非齐次微分方程y"+Py’+Qy=3e2x满足初始条件y(0)=y’(0)=0的特解,则极限=()
随机试题
关于分子生物学诊断在遗传性疾病中应用的描述错误的是
某建设项目建设投资2000万元、流动资金200万元;投产后,达到设计能力后正常年份的所得税前利润为300万元、贷款利息150万元,则该项目的总投资收益率为()。
商业银行对问题授信应采取的措施包括()。
商业银行创新表外业务的直接动机是( )。
某部队政治部为协调干部家属调动问题,向某市监狱管理局行文,标题是《关于××调入市监狱管理局的请示》,该文的文种选用错误,应该选用()。
Inthe1920s,demandforAmericanfarmproductsfell,asEuropeancountriesbegantorecoverfromWorldWarIandinstitutedaus
求下列函数带皮亚诺余项型至括号内所示阶数的麦克劳林公式:(I)f(x)=excosx(3阶);(Ⅱ)
判断复选框是否被选中的属性为
Thepictureshowsus______
TheGermanictribescametoEnglandfromthecontinentaboutthemiddleofthe5thcenturyweretheAngles,Saxonsand______.
最新回复
(
0
)