首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a>0,b>0,a≠b,证明下列不等式: (Ⅰ)ap+bp>21-p(a+b)p (P>1); (Ⅱ)ap+bp<21-p(a+b)p (0<P<1).
设a>0,b>0,a≠b,证明下列不等式: (Ⅰ)ap+bp>21-p(a+b)p (P>1); (Ⅱ)ap+bp<21-p(a+b)p (0<P<1).
admin
2016-10-21
50
问题
设a>0,b>0,a≠b,证明下列不等式:
(Ⅰ)a
p
+b
p
>2
1-p
(a+b)
p
(P>1);
(Ⅱ)a
p
+b
p
<2
1-p
(a+b)
p
(0<P<1).
选项
答案
将a
p
+b
p
>2
1-p
(a+b)
p
改写成[*].考察函数f(χ)=χ
p
,χ>0,则 f′(χ)=pχ
p-1
,f〞(p)=p(p-1)χ
p-2
. (Ⅰ)若P>1,则f〞(χ)>0([*]>0),f(χ)在(0,+∞)为凹函数,由已知不等式(4.6),其中=[*]得:[*]a>0,b>0,a≠b,有 [*] (Ⅱ)若0<P<1,则f〞(χ)<0([*]χ>0),f(χ)在(0,+∞)为凸函数,由不等式(4.7),其中t=[*]得 [*].
解析
转载请注明原文地址:https://kaotiyun.com/show/APt4777K
0
考研数学二
相关试题推荐
[*]
[*]
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设f(x)在[0,+∞)上连续,且∫01f(x)dx<-,证明:至少存在一个ξ∈(0,+∞),使得f(ξ)+ξ=0
设函数f(x)在[0,1]上具有二阶导数f"(x)≤0,试证明:∫01f(x2)dx≤
已知函数f(x,y)在点(0,0)的某个邻域内连续,且,则________。
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解为________。
设A,B为同阶可逆矩阵,则().
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设A为n阶可逆矩阵,则下列结论正确的是().
随机试题
TheBeijingPeaceInternationalHotelWeoffertravelersawealthoffeaturesthatpromptareturnvisit.EASYACCESSIBI
人类心理活动的基础是()。
A、白塞综合征B、疱疹型溃疡C、轻型口疮D、腺周口疮E、疱疹性口炎复发性口疮,按临床分型,溃疡少于5个,症状轻的称()
诊断慢性肺源性心脏病的主要依据是
用赢得值法进行工程项目费用一进度绩效评价时,如果费用偏差大于0,费用绩效指数大于1,说明()
股价只反映历史信息的市场是()。
拉丁美洲革命前夕,大大鼓舞拉美人民的历史事件是()。
A、不用上课了B、不想改作文C、他一会没课D、下课以后改D“不过我马上要上课,等下课的吧”,其中“不过”表示转折,是重点要强调的部分,“等下课的吧”由此可以看出是下课以后改,选择D。
MostofushaveanimageofastandardEnglishinpronunciation,andverycommonlyinGreatBritainthisis"ReceivedPronun
Publicspeakingfillsmostpeoplewithdread.Humiliationisthebiggestfearsself-exposureandfailingtoappealtothe【B1】___
最新回复
(
0
)