首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个n阶矩阵,先交换A的第i列与第j列,然后再交换第i行和第j行,得到的矩阵记成B,则下列五个关系①|A|=|B|;②r(A)=r(B);③A,B等价;④A~B;⑤A,B合同.其中正确的有 ( )
设A是一个n阶矩阵,先交换A的第i列与第j列,然后再交换第i行和第j行,得到的矩阵记成B,则下列五个关系①|A|=|B|;②r(A)=r(B);③A,B等价;④A~B;⑤A,B合同.其中正确的有 ( )
admin
2019-01-24
60
问题
设A是一个n阶矩阵,先交换A的第i列与第j列,然后再交换第i行和第j行,得到的矩阵记成B,则下列五个关系①|A|=|B|;②r(A)=r(B);③A,B等价;④A~B;⑤A,B合同.其中正确的有 ( )
选项
A、2个.
B、3个.
C、4个.
D、5个.
答案
D
解析
将A的i列,j列互换,再将i行,j行互换,相当于用初等矩阵E
ij
右乘、左乘矩阵A,即B=E
ij
AE
ij
,其中
|E
ij
|=-1≠0,是可逆矩阵,|E
ij
|
2
=1,故有|B|=|E
ij
AE
ij
|=|A|,r(A)=r(B),且A等价于B,即①,②,③成立.
E
ij
-1
=E
ij
,故E
ij
-1
AE
ij
=E
ij
AE
ij
=B,故A~B,④成立.
E
ij
-1
=E
ij
,故E
ij
AE
ij
=E
ij
T
AE
ij
=B,故A合同于B,⑤成立.
从而知①,②,③,④,⑤均成立.应选(D).
转载请注明原文地址:https://kaotiyun.com/show/ASM4777K
0
考研数学一
相关试题推荐
讨论函数f(x)=的连续性.
证明可微的必要条件:设z=f(x,y)在点(x0,y0)处可微,则fx(x0,y0)fy(x0,y0)都存在,且=(x0,y0)=L(x0,y0)△x+fy(x0,y0)△y。
证明:对于曲线积分的估计式为|∫LPdx+Qdy|≤lM,式中l为积分曲线段长度,并证明
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f’’(ξ)=0.
设f(x)二阶连续可导,且f(0)=f’(0)=0,f’’(0)≠0,设μ(x)为曲线y=f(x)在点(x,f(x))处的切线在x轴上的截距,求.
二次型f(x1,x2,x3)=(x1一2x2)2+4x2x3的矩阵为_______.
设则有().
求函数Y=(X一1)的单调区间与极值,并求该曲线的渐近线.
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
设F:x=x(t),y=y(t)(α<t<β是区域D内的光滑曲线,即x(t),y(t)在(α,β)内有连续的导数且x’2(t)+y’2(t)≠0,f(x,y)在D内有连续的偏导数.若P0∈是函数f(x,y)在上的极值点,证明:f(x,y)在点P0沿的切线方
随机试题
简述风化和潮解的概念。
曲线y=ax-x2(a>0)与x轴围成的平面图形被曲线y=bx2(b>0)分成面积相等的两部分,求a,b的值.
急性化脓性关节炎的临床特征是
A.TOF-MRAB.CEMRAC.PC-MRAD.MRCPE.BOID-fMRI用于显示需极短时间内成像的病变
我国实施国家信息化的总体思路不包括( )。
在实际工作中,费用的确认都是在支出发生时直接确认。()
下列各项中,属于账务处理程序主要内容的有()。
下列不属于公积金个人住房贷款特点的是()。
根据著作权法及其相关规定,展览权包括哪些内容?
以下是各网站对国家法定节假日调整方案民意调查统计结果,除掉无效投票外,大约155万网民参与此项调查。下列哪两类调查网民数相近?()
最新回复
(
0
)