首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
公务员
如图,A、E、C是半圆上的三点,半圆圆心为B,半径长为a,AC为其直径,点E为的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC⊥平面BED,FB=a. (1)证明:EB⊥FD; (2)求点B到平面FED的距离.
如图,A、E、C是半圆上的三点,半圆圆心为B,半径长为a,AC为其直径,点E为的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC⊥平面BED,FB=a. (1)证明:EB⊥FD; (2)求点B到平面FED的距离.
admin
2015-12-09
36
问题
如图,A、E、C是半圆上的三点,半圆圆心为B,半径长为a,AC为其直径,点E为
的中点,点B和点C为线段AD的三等分点,平面AEC外一点F满足FC⊥平面BED,FB=
a.
(1)证明:EB⊥FD;
(2)求点B到平面FED的距离.
选项
答案
(1)因为点E是[*]的中点,所以∠ABE=[*],即BE⊥AC, 又因为FC⊥面BED,BE[*]面BED,所以FC⊥BE。 又因为FC[*]面FBC,AC[*]面FBC.FC∩AC=C 所以BE⊥面FBC, 又因为FD[*]面FBC. 所以BE⊥FD. (2)设点B到平面FED的距离为h. [*] 在Rt△BEF中,EF=[*], 又因为FD=DE=[*], 在△DFE中,S
△DFE
=[*], 所以V
F-BED
=V
B-DFE
,即[*], 解得h=[*]. 所以点B到平面FED的距离为[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/AUGq777K
本试题收录于:
小学数学题库教师公开招聘分类
0
小学数学
教师公开招聘
相关试题推荐
两个半元音为______。
为什么说学生具有发展的可能性与可塑性?
O1和O2的坐标分别为(-1,0)、(2,0),⊙O1和⊙O2的半径分别是2、5,则这两圆的位置关系是()。
如图,⊙O是△ABC的内切圆,与边BC,CA,AB的切点分别为D,E,F,若∠A=70°,则∠EDF=______。
如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米,若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?(参考数据:tan40°=0.84,sin40°=0.64,cos40°=)
如图,在正△ABC中,D、E分别在AC、AB上,且AE=BE,则有()。
如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是()。
下列三个命题:①同位角相等,两直线平行;②两点之间,线段最短;③过两点有且只有一条直线,其中真命题有().
一个棱柱的直观图和三视图(主视图和俯视图是边长为a的正方形,左视图是直角边长为a的等腰三角形)如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点。(1)求证:GN⊥AC;(2)求三棱锥E—FMC的体积;(3)当FG
随机试题
简述财务类人员的职业生涯规划。
做B-D试验的注意事项有
某新生儿,诊断为单侧完全性唇裂合并单侧完全性腭裂,同时伴有鼻部畸形。腭裂的正畸治疗应开始于
实物资产清查的技术推算法适应范围广,绝大部分实物资产都可以采用这种方法进行清查。()
关于培训与开发组织体系的陈述,错误的是()。
2013年4月,吴某设立一家有限责任公司,从事绿色食品开发,注册资本为200万元。公司成立半年后,为增加产品开发力度,吴某拟新增资本100万元,并为此分别与贾某、刘某洽谈,该二人均有意愿认缴全部新增资本,加入吴某的公司。吴某遂先后与贾某、刘某二人就投资事项
侦查:调查:证据
马克思主义中国化就是把马克思主义基本原理同中国革命、建设和改革的实践结合起来,同中国的优秀历史传统和优秀文化结合起来,既坚持马克思主义,又发展马克思主义。马克思主义中国化的科学内涵包括
下列有关数据库的描述,正确的是()。
AccordingtoPrimeMinisterWenJiabao,whatwillChinado?
最新回复
(
0
)