首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
函数f(x,y)=e-x(ax+b一y2),若f(一1,0)为其极大值,则a—b满足________.
函数f(x,y)=e-x(ax+b一y2),若f(一1,0)为其极大值,则a—b满足________.
admin
2021-08-02
105
问题
函数f(x,y)=e
-x
(ax+b一y
2
),若f(一1,0)为其极大值,则a—b满足________.
选项
答案
a≥0,b—2a
解析
应用二元函数取极值的必要条件得
所以b=2a.又由于
A=f”
xx
(一1,0)=e
—x
(ax+b一y
2
一2a)|
(1,0)
=e(—3a+b),
B=f”
xy
(一1,0)=2ye
—x
|
(—1,0)
=0,
C=f”
yy
(一1,0)=一2e
—x
|
(—1,0)
=一2e,
A=AC—B
2
=一2e
2
(一3a+b),
令△>0,A<0,解得a>0,b=2a为所求条件.当a<0时,得△<0,此时函数f(x,y)在(一1,0)不取极值;当a=0,b=0时,得△=0,此时f(x,y)=一y
2
e
—x
≤f(一1,0)=0,故f(一1,0)也是极大值.于是a≥0,b=2a即为所求.
转载请注明原文地址:https://kaotiyun.com/show/AWy4777K
0
考研数学二
相关试题推荐
设有向量组α1=(1,一1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,一2,2,0),α5=(2,1,5,10),则该向量组的极大线性无关组是
证明曲线上任一点的切线在两坐标轴上的截距之和为常数.
设f(x)二阶连续可导且f(0)=f’(0)=0,f"(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求
设D={(x,y)|x2+y2≤2x+2y},求I=(x+y2)dxdy.
已知A,B是反对称矩阵,证明:A2是对称矩阵;
已知f(x)二阶可导,且f(x)>0,f(x)f"(x)一(f’(x))2≥0(x∈R).(2)若f(0)=1,证明:f(x)≥ef’(0)x(x∈R).
设函数f(x)在定义域内可导,y=f(x)的图形如图所示,则导函数y=f’(x)的图形为()[img][/img]
设平面D由及两条坐标轴围成,则()
设平面薄片所占的区域D由抛物线y=x2及直线y=x所围成,它在(x,y)处的面密度ρ(x,y)=x2y,求此薄片的重心.
随机试题
态度行为意向成分是指个体对客体的()
判断手卫生消毒合格的标准是
动脉粥样硬化的危险因素有()。
我国《合同法》认定违约行为采用的是()责任原则。
操作系统中的进程与处理器管理的主要功能是()。
天文照相用未曝光平面软片,规格200×250mm
甲、乙两数之和加上甲数是220,加上乙数是170,甲、乙两数之和是()。
《权利请愿书》
下列说法错误的是()。
设,问a,b,c为何值时,向量组α1,α2,α3与β1,β2,β3是等价向量组?向量组等价时,求α1由β1,β2,β3线性表出的表出式及β1由α1,α2,α3线性表出的表出式.
最新回复
(
0
)