首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,且f’(x)>0,f”(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则( )
设f(x)二阶可导,且f’(x)>0,f”(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则( )
admin
2019-08-12
59
问题
设f(x)二阶可导,且f’(x)>0,f”(x)>0,△x为自变量x在点x
0
处的增量,△y与dy分别为f(x)在点x
0
处对应的增量与微分,若△x>0,则( )
选项
A、0<dy<△y.
B、0<△y<dy.
C、△y<dy<0.
D、dy<△y<0.
答案
A
解析
由于f’(x)>0,故f’(x
0
)<0,而dy=f’(x
0
)△x,又△x>0,从而dy>0.
又f”(x)>0,从而f’(x)单调递增,而
△y=f(x
0
+△x)-f(x
0
)=f’(ξ)△x,x
0
<ξ<x
0
+△x,于是△y=f’(ξ)△x>f’(x
0
)△x=dy,所以应选(A).
转载请注明原文地址:https://kaotiyun.com/show/rSN4777K
0
考研数学二
相关试题推荐
设A为m×n实矩阵,E为n阶单位矩阵,矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
设A、B都是n阶矩阵,则A与B相似的一个充分条件是
设n维列向量组α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαn线性无关|P|≠0.
在过点O(0,0)和A(π,0)的曲线族y=asinx(a>0)中,求一条曲线L,使沿该曲线从O到A的曲线积分∫L(1+y3)dx+(2x+y)dy的值最小.
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2证明
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设,P点的坐标为求点M,使得L在M点处的法
用变量代换x=cost(0<t<π)化简微分方程(1一x2)y’’一xy’+y=0,并求其满足y|x=0=1,y’|x=0的特解。
确定常数a和b的值,使f(χ)=χ-(a+b)sinχ当χ→0时是χ的5阶无穷小量.
设平面区域D由直线x=3y,y=3x及x+y=8围成。计算
设随机变量X的概率分布为P{X=k}=C,k=1,2,…,λ>0,求常数C。
随机试题
对某病爆发流行进行调查时,首先应采取的措施是
项目监理组织也像其他组织一样,由()因素构成,各因素之间密切联系,形成一个整体。
交流接触器广泛应用于()。
债务人将其权利移交给债权人占有,用以担保债权实现的方式是( )。
各级政府、各部门、各单位均适用政府会计准则制度。()
当工作遇到挫折时,刘老师总是能够乐观、豁达地面对。这表明刘老师具备()。
Idon’tknowyouwanttokeeptheletter.I’ve______itup.
以下属于近代中国半殖民地半封建社会基本特征的有()
公平正义有多个方面的内涵,主要包括
WhydidAlicecallherfather?
最新回复
(
0
)