首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)二阶可导,且f’(x)>0,f”(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则( )
设f(x)二阶可导,且f’(x)>0,f”(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则( )
admin
2019-08-12
72
问题
设f(x)二阶可导,且f’(x)>0,f”(x)>0,△x为自变量x在点x
0
处的增量,△y与dy分别为f(x)在点x
0
处对应的增量与微分,若△x>0,则( )
选项
A、0<dy<△y.
B、0<△y<dy.
C、△y<dy<0.
D、dy<△y<0.
答案
A
解析
由于f’(x)>0,故f’(x
0
)<0,而dy=f’(x
0
)△x,又△x>0,从而dy>0.
又f”(x)>0,从而f’(x)单调递增,而
△y=f(x
0
+△x)-f(x
0
)=f’(ξ)△x,x
0
<ξ<x
0
+△x,于是△y=f’(ξ)△x>f’(x
0
)△x=dy,所以应选(A).
转载请注明原文地址:https://kaotiyun.com/show/rSN4777K
0
考研数学二
相关试题推荐
(01)已知α1,α2,α3,α4是线性方程组AX=0的一个基础解系,若β1=α1+tα2,β2=α2+tα3,β3=α3+tα1,β4=α1+tα1.讨论实数t满足什么关系时,β1,β2,β3,β4也是AX=0的一个基础解系.
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由.
设矩阵An×n正定,证明:存在正定阵B,使A=B2.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=0(i=1,2);
设f(u,v)具有二阶连续偏导数,且满足fu’(u,v)+fv’(u,v)=uv求y=e-2xf(x,x)所满足的一阶微分方程,并求其通解.
设f(x,y)在点(0,0)处连续,且其中a,b,c为常数.(1)讨论f(x,y)在点(0,0)处是否可微,若可微则求出df(x,y)|(0,0);(2)讨论f(x,y)在点(0,0)处是否取极值,说明理由.
设f(x)是连续函数.若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax-1).
设曲线y=f(x),其中y=f(x)是可导函数,且f(x)>0。已知曲线y=f(x)与直线y=0,x=1及x=t(t>1)所围成的曲边梯形绕戈轴旋转一周所得立体的体积值是该曲边梯形面积值的,πt倍,求该曲线方程。
f(x)在[0,1]上有连续导数,且f(0)=0,证明:存在ξ∈[0,1],使得
D是顶点分别为(0,0),(1,0),(1,2)和(0,1)的梯形闭区域,则(1+x)sinydσ=______。
随机试题
成人潮气量约为【】
患者男性,64岁。因呕血、黑便2小时入院。既往有慢性乙型肝炎10余年。入院查.ALT124U/L,AST153U/L,总胆红素91μmol/L,血清白蛋白16g/L,凝血酶原时间21s,CO2﹣CP15mol/L,BUN20.5mmol/L,Cr25
A.子宫腺肌病B.功能失调性子宫出血C.子宫内膜癌D.子宫肌瘤E.子宫内膜息肉下列各病例最可能的诊断是38岁妇女,痛经4年逐渐加重,月经量增多而贫血。妇检子宫略大,质硬。
导致反射性呕吐的病因包括下列疾病,但除外
特种设备专指涉及生命安全、危险较大的锅炉、压力容器(含气瓶)、压力管道、电梯、起重机械、客运索道、大型游乐设施等。国家对特种设备实行()监察体制。
设备质量监理文件种类繁多,按作用不同分为监理大纲、( )和监理记录。
各国财政收入最重要的收入形式和最主要的收入来源是()。
在资产负债表日企业计算确认所持有交易性金融资产的公允价值低于其账面余额的金额,应借记的会计科目是()。
若矩阵A=可相似对角化,则t=______.
[*]
最新回复
(
0
)