首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
admin
2019-03-23
70
问题
设η
1
,η
2
,η
3
,η
4
是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是( )
选项
A、η
1
—η
2
,η
2
+η
3
,η
3
—η
4
,η
4
+η
1
B、η
1
+η
2
,η
2
+η
3
+η
4
,η
1
—η
2
+η
3
C、η
1
+η
2
,η
2
+η
3
,η
3
+η
4
,η
4
+η
1
D、η
1
+η
2
,η
2
—η
3
,η
3
+η
4
,η
4
+η
1
答案
D
解析
由已知条件,Ax=0的基础解系是由四个线性无关的解向量构成的,而B选项中仅三个解向量,不符合要求,故B选项不是基础解系。
选项A和选项C中,都有四个解向量,但因为
(η
1
—η
2
)+(η
2
+η
3
)—(η
3
—η
4
)—(η
4
+η
1
)=0,
(η
1
+η
2
)—(η
2
+η
3
)+(η
3
+η
4
)—(η
4
+η
1
)=0,
说明A、C两项中的向量组均线性相关,因而A、C两项也不是基础解系。
对于D选项中的向量,
(η
1
+η
2
,η
2
—η
3
,η
3
+η
4
,η
4
+η
1
)=(η
1
,η
2
,η
3
,η
4
)
而
=2≠0,
知η
1
+η
2
,η
2
—η
3
,η
3
+η
4
,η
4
+η
1
线性无关,又因η
1
+η
2
,η
2
—η
3
,η
3
+η
4
,η
4
+η
1
均是Ax=0的解,且解向量个数为4,所以D选项是基础解系,故选D。
转载请注明原文地址:https://kaotiyun.com/show/AXV4777K
0
考研数学二
相关试题推荐
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
判断下列函数的单调性:
证明:r(A)=r(ATA).
证明:χ-χ2<ln(1+χ)<χ(χ>0).
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
设y=∫0χdt+1,求它的反函数χ=φ(y)的二阶导数及φ〞(1).
随机试题
有效领导行为的关键是()
关于腰椎间盘突出症的叙述,下列哪项是错误的
麻疹出疹与发热的关系是( )
使人体血糖降低的有
盘亏固定资产经批准后,应借记()账户。
实际上,不论是出于工资水平的考虑,还是出于岗位技能等级考虑的选择性失业,都有()的色彩。(2004年6月三级真题)
【2015.河南驻马店】马斯洛把完善自己、充分发挥自己潜能完成自身使命的需要称作()。
在巴甫洛夫的经典条件反射作用的实验中,当狗看到食物时会自然分泌唾液,该食物属于()
ScienceandTruth"FINAGLE"(欺骗)isnotawordthatmostpeopleassociatewithscience.Onereasonisthattheimageofthes
Anovertimpactofmodeminformationsystemsconcernstheindividual’sstandardandstyleofliving.Informationsystemsaffect
最新回复
(
0
)