首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,下列命题中正确的是( )
设A为m×n矩阵,下列命题中正确的是( )
admin
2020-03-01
41
问题
设A为m×n矩阵,下列命题中正确的是( )
选项
A、若A中有n阶子式不为零,则Ax=0仅有零解。
B、若A中有n阶子式不为零,则Ax=b必有唯一解。
C、若A中有m阶子式不为零,则Ax=0仅有零解。
D、若A中有m阶子式不为零,则Ax=b必有唯一解。
答案
A
解析
A是m×n矩阵,若A中有n阶子式不为零,而A中又不存在n+1阶子式,故必有R(A)=n。同理,若A中有m阶子式不为零,则必有R(A)=m。
对于选项A,因为R(A)=n,而Ax=0是n个未知数的齐次方程组,所以Ax=0必只有零解。故A项正确。
对于选项B,当R(A)=n时,增广矩阵
的秩有可能是n+1,所以Ax=b可能无解,因此B项不正确。例如:
有R(A)=2,
=3,方程组无解。
对于C和D两项,R(A)=m,即A的行向量组线性无关,那么其延伸组必线性无关,所以
=m。因此,方程组Ax=b必有解,但未必有唯一解,Ax=0也未必只有零解。
例如,
有无穷多解。仅当m=n时,C、D两项才正确。
因此只有A项确定正确,故选A。
转载请注明原文地址:https://kaotiyun.com/show/AfA4777K
0
考研数学二
相关试题推荐
下列矩阵中能相似于对角阵的矩阵是()
设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是
设A是5阶方阵,且A2=O,则r(A*)=___________.
的斜渐近线为_______.
设f(x)具有连续导数,且F(x)=∫0x(x2-t2)f’(t)dt,若当x→0时F’(x)与x2为等价无穷小,则f’(0)=________.
设3阶矩阵A的特征值分别为1,2,2,E为3阶单位矩阵,则|4A一1一E|=__________.
设二阶实对称矩阵A的一个特征值为λi=1,属于λ1的特征向量为(1,一1)T,若|A|=一2,则A=________。
若实对称矩阵A与矩阵合同,则二次型xTAx的规范形为___________.
用配方法化下列二次型为标准形:f(x1,x2,x3)=2x1x2+2x1x3+6x2x3
设f(x)=x-sinxcosxcos2x,g(x)=则当x→0时f(x)是g(x)的
随机试题
护理水、电解质和酸碱失衡病人的预期目标是()
管理的二重性是指
下列梗死灶常发生化脓的是
既能祛风湿,又能退虚热的药是
呋喃唑酮主要用于()。
通常情况下,导致商业银行破产倒闭的直接原因是()。
社会服务机构财务管理的功能主要包括()。
不安抗辩权,是指当事人瓦负债务,有先后履行顺序的,先履行的一方有确切证据表明另一方丧失履行债务能力时,在对方没有履行或者没有提供担保之前,有权中止合同履行的权利。规定不安抗辩权是为了切实保护当事人的合法权益,防止借合同进行欺诈,促使对方履行义务。以下行使了
A、 B、 C、 D、 D
设函数f(u)在(0,+∞)内具有二阶导数,且z==0.(1)验证f"(u)+=0;(2)若f(1)=0,f’(1)=1,求函数f(u)的表达式.
最新回复
(
0
)