首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
admin
2018-04-15
57
问题
A,B均为n阶非零矩阵,且A
2
+A=0,B
2
+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
选项
答案
因为(E+A)A=0,A≠0,知齐次方程组(E+A)x=0有非零解,即行列式|E+A|=0.所以λ=-1必是矩阵A的特征值.同理,λ=-1也必是矩阵B的特征值. 类似地,由AB=0,B≠0,知行列式|A|=0,所以λ=0必是矩阵A的特征值,同理,λ=0也必是矩阵B的特征值. 对于Aα=-α,用矩阵B左乘等式的两端有BAα=-Bα,又因为BA=0,故Bα=0-0α. 即α是矩阵B属于特征值λ=0的特征向量. 那么,α与β是矩阵B的不同特征值的特征向量,因而α,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Air4777K
0
考研数学一
相关试题推荐
已知f(x)在x=0的某个邻域内连续,且f(0)=0.=2,则在点x=0处f(x)
若视∑为曲面x2+y2+z2=a2(y≥0,z≥0)的上侧,则当f(x,y,z)为下述选项中的函数(),曲线积分。
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且A的秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,C表示任意常数,则线性方程组AX=b的通解X=()。
如果幂级数在x=-1收敛,在x=3发散,则其收敛半径为________。
设二维随机变量(X,Y)服从区域-1≤x≤1,0≤y≤2上的均匀分布,求二次曲面x12+2x22+Yx32+2x1x2+2Xx1x3=1为椭球面的概率。
设常数a>0,L为摆线一拱,0≤t≤2π,则I=∫Lyds=________。
(1)求级数的和函数S(x);(2)将S(x)展开为x-π/3的幂级数。
求极限
假设你是参加某卫视“相亲节目”的男嘉宾,现有n位女嘉宾在你面前自左到右排在一条直线上,每两位相邻的女嘉宾的距离为a(米).假设每位女嘉宾举手时你必须和她去握手,每位女嘉宾举手的概率均为,且相互独立,若Z表示你和一位女嘉宾握手后到另一位举手的女嘉宾处所走的路
随机试题
葡萄胎随访时必须进行的检查是
上颌磨牙进行全冠修复时,为避免食物嵌塞应有哪种观念A.生物力学B.生物材料学C.动态D.静态E.形态学
患儿,10个月,因发热,咳嗽,惊厥来院就诊,体检:体温39.8℃,咽充血,前囟平。该患儿惊厥的原因可能是
本题涉及土地增值税法及企业所得税法。府城房地产开发公司为内资企业,公司于2015年1月—2018年2月开发“东丽家园”住宅项目,发生相关业务如下:(1)2015年1月通过竞拍获得一宗国有土地使用权,合同记载总价款17000万元,并规定2015年3月1日动
读图文材料。葡萄酒用新鲜葡萄或葡萄汁酿造而成。近年来。我国葡萄酒产量及消费量快速增长。据图文材料分析。影响葡萄酒产业布局最主要的一组区位因素是()。
设函数f(x)=其中g(x)二阶连续可导,且g(0)=1.求f’(x);
Imeanttogiveyouthisbooktoday,butIforgot.
A、Peoplecansurviveifluckyenough.B、Thechanceisverysmall.C、Theycanbeprevented.D、Thepossibilitycanbeignored.B由句
Directions:Inthispart,youwillhave15minutestogooverthepassagequicklyandanswerthequestionsonAnswerSheet1.Fo
Itisessentialtobuildupyourconfidence____________(如果你想在一生中有所成就的话).
最新回复
(
0
)