首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B,C均是3阶矩阵,满足AB=-2B,CAT=2C. 其中 (Ⅰ)求A; (Ⅱ)证明:对任何3维向量ξ,A100ξ与ξ必线性相关.
设A,B,C均是3阶矩阵,满足AB=-2B,CAT=2C. 其中 (Ⅰ)求A; (Ⅱ)证明:对任何3维向量ξ,A100ξ与ξ必线性相关.
admin
2020-05-19
54
问题
设A,B,C均是3阶矩阵,满足AB=-2B,CA
T
=2C.
其中
(Ⅰ)求A;
(Ⅱ)证明:对任何3维向量ξ,A
100
ξ与ξ必线性相关.
选项
答案
由题设条件①AB=一2B,将B按列分块,设B=(β
1
,β
2
,β
3
),则有A(β
1
,β
2
,β
3
)=一2(β
1
,β
2
,β
3
),即Aβ
i
=一2β
i
,i=1,2,3,故β
i
(i=1,2,3)是A的对应于λ=一2的特征向量.又因β
1
,β
2
线性无关,β
3
=β
1
+β
2
,故β
1
,β
2
是A的属于λ=一2的线性无关特征向量.②CA
T
=2C,两边转置得AC
T
=2C
T
,将C
T
按列分块,设C
T
=(α
1
,α
2
,α
3
),则有A(α
1
,α
2
,α
3
)=2(α
1
,α
2
,α
3
),Aα
i
=2α
i
,i=1,2,3,故α
i
(i=1,2,3)是A的属于λ=2的特征向量,因α
1
,α
2
,α
3
互成比例,故α
1
是A的属于特征值λ=2的线性无关的特征向量. 取P=(β
1
,β
2
,α
1
),则P可逆,且 [*] (Ⅱ)因Aβ
i
=一2β
i
(i=1,2),故A
100
β
i
=(一2)
100
β
i
=2
100
β
i
(i=1,2),Aα
1
=2α
1
,故A
100
α
1
=2
100
α
1
. 对任意的3维向量ξ,因β
1
,β
2
,α
1
线性无关,考可由β
1
,β
2
,α
1
线性表示,且表示法唯一. 设ξ=μ
1
β
1
+μ
2
β
2
+μ
3
α
1
,则 A
100
ξ=A
100
(μ
1
β
1
+μ
2
β
2
+μ
3
α
1
)=μ
1
A
100
β
1
+μ
2
A
100
β
2
+μ
3
A
100
α
1
=μ
1
2
100
β
1
+μ
2
2
100
β
2
+μ
3
2
100
α
1
=2
100
(μ
1
β
1
+μ
2
β
2
+μ
3
a1)=2100ξ. 得证A
100
ξ和ξ成比例,A
100
ξ和ξ线性相关.
解析
转载请注明原文地址:https://kaotiyun.com/show/Akv4777K
0
考研数学一
相关试题推荐
对数螺线r=eθ在点(r,θ)=处的切线的直角坐标方程为___________.
已知矩阵A=的特征值的和为3,特征值的乘积是—24,则b=________。
若α1=(1,0,5,2)T,α2=(3,-2,3,-4)T,α3(-1,1,t,3)T线性相关,则未知数t=_______.
从R2的基α1=,α2=到基β1=,β2=的过渡矩阵为_______.
求曲线在yOz平面上的投影方程.
设常数a∈[0,1],随机变量X~U[0,1],Y=|X一a|,则E(XY)=_________.
函数是否可以是某随机变量(X,Y)的分布函数?为什么?
将一枚均匀硬币连掷3次,X为这3次抛掷中正面出现的次数,Y为这3次抛掷中正、反面出现的次数之差的绝对值,试写出(X,Y)的分布列和关于X,Y的边缘分布列,并判断X与Y是否独立。
设3阶矩阵A满足A*=AT,且第1行的元素为3个相等的正数,则第1行第1列的元素为().
求极限其中a,b,c均为正数.
随机试题
_______不但在营养方面不可缺少,而且对食品和菜点的色、香、味、形的构成也起着重要作用。
检查脑动脉的仪器条件中,需要调节的是
己知交流电流i(t)的周期T=1ms,有效值I=0.5A,当t=0时,i=,则它的时间函数描述形式是()。
《(期货经纪合同)指引》《期货交易风险说明书》的内容和格式由()制定。
关于事业部制组织形式的说法,正确的是()。
在会计体系中,凭证号是一个重要的要素,在记账凭证和账簿中都是不可缺少的项目,其作用是()。
根据《农村土地承包法》的规定,耕地的承包期为()。
区县组织文艺演出下乡星火工程,为群众举办为期四个月的演出,你是县文化局负责人,如何开展?
某公司刚发了0.6元的股利,在未来三年以15%的增长率分发股利,三年后则以5%的低增速增长,当前的贴现率为12%,求股票价格。
搞清楚什么是社会主义、怎样建设社会主义,关键是
最新回复
(
0
)