首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
证明:已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
admin
2016-05-09
65
问题
证明:已知λ
1
,λ
2
,λ
3
是A的特征值,α
1
,α
2
,α
3
是相应的特征向量且线性无关,如α
1
+α
2
+α
3
仍是A的特征向量,则λ
1
=λ
2
=λ
3
.
选项
答案
若α
1
+α
2
+α
3
是矩阵A属于特征值λ的特征向量,即 A(α
1
+α
2
+α
3
)=λ(α
1
+α
2
+α
3
). 又A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,于是有 (λ-λ
1
)α
1
+(λ-λ
2
)α
2
+(λ-λ
3
)α
3
=0. 因为α
1
,α
2
,α
3
线性无关,故λ-λ
1
=0,λ-λ
2
=0,λ-λ
3
=0. 即λ
1
=λ
2
=λ
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Arw4777K
0
考研数学一
相关试题推荐
设y1(χ),y2(χ)是微分方程y〞+py′+qy=0的解,则由y1(χ),y2(χ)能构成方程通解的充分条件是().
设φ连续,且x2+y2+z2=
设f(x)在(-∞,+∞)上有定义且是周期为2的奇函数,已知x∈(0,1)时,f(x)=lnx+cosx+ex+1,则当x∈[-4,-2]时,f(x)的表达式.
设a1,a2,a3是AX=0的基础解系,则该方程组的基础解系还可表示成().
设A为n阶方阵,B是A经过若干次初等变换后所得到的矩阵,则有().
设A为三阶实对称矩阵,且满足条件A2+2A=O.已知r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
考虑二次型f=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3,问λ取何值时,f为正定二次型?
设四元齐次线性方程组(Ⅰ)为且已知另一个四元齐次线性方程组(Ⅱ)的一个基础解系为a1=(2,-1,a+2,1)π,a2=(-1,2,4,a+8)π.(1)求方程组(Ⅰ)的一个基础解系;(2)当a为何值时,方程组(Ⅰ)与方程组(Ⅱ)有非零
设A,B为三阶矩阵,满足AB+E=A2+B,E为三阶单位矩阵,又知A=,求矩阵B.
设函数f(x)可导,且f’(x)>0,曲线y=f(x)(x≥0)经过坐标原点O,其上任意一点M的切线与x轴交于T,又MP垂直x轴于点P.已知由曲线y=f(x),直线MP及x轴所围成的面积与△MTP的面积之比为3:2,求满足上述条件的曲线的方程.
随机试题
在真理标准问题上坚持辩证法,就是承认
Flowersarealwaysa______(please)sight,especiallyinthecity.
A.高胆红素血症B.血钙浓度升高C.尿酸盐沉着D.磷酸铵镁沉着E.含铁血黄素沉着机体发生转移性钙化是由于
关于风险管理的概念下列正确的是()。
某工程,建设单位与施工单位按照《建设工程施工合同(示范文本)》(GF—99—0201)签订了施工合同,采用可调价施工合同形式。工期20个月,项目监理机构批准的施工总进度计划如下图所示,各项工作在其持续时间内均按匀速进展,每月计划完成投资见下表。施工过程
下列说法中不正确的是()。
关于对纳税人、扣缴义务人未缴少缴税款的追征制度,下列说法正确的是()。
下列有关审计工作底稿归档期限的表述中,正确的是()。
实行价格歧视的前提条件有()。
Whendidtheearthquakehappen?
最新回复
(
0
)