首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
证明:已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关,如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3.
admin
2016-05-09
26
问题
证明:已知λ
1
,λ
2
,λ
3
是A的特征值,α
1
,α
2
,α
3
是相应的特征向量且线性无关,如α
1
+α
2
+α
3
仍是A的特征向量,则λ
1
=λ
2
=λ
3
.
选项
答案
若α
1
+α
2
+α
3
是矩阵A属于特征值λ的特征向量,即 A(α
1
+α
2
+α
3
)=λ(α
1
+α
2
+α
3
). 又A(α
1
+α
2
+α
3
)=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,于是有 (λ-λ
1
)α
1
+(λ-λ
2
)α
2
+(λ-λ
3
)α
3
=0. 因为α
1
,α
2
,α
3
线性无关,故λ-λ
1
=0,λ-λ
2
=0,λ-λ
3
=0. 即λ
1
=λ
2
=λ
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/Arw4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上可导,且f(0)=0,0<f’(x)<1,证明:
求z=x2-2y2+2x+4在区域x2+4y2≤4上的最小值和最大值.
已知|A|==9,则代数余子式A21+A22=
设f(χ)=在χ=0处连续,则f(χ)在χ=0处().
已知f(u)有二阶连续导数,且z=f在x>0时满足.求z的表达式.
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求正交矩阵Q
已知3阶实对称矩阵A与B=合同,则二次型xTAx的规范形为()
设向量=(1,1,﹣1)T是A=的一个特征向量判断A是否相似于对角矩阵,说明理由
设f(x)在[a,b]上连续可导,f(x)在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0,证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);(2)在(a,b)内至少存在一点η(η≠
设函数f(x)在[1,+∞)上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体积为V(t)=π/3[t2f(t)-f(1)].试求y=f(x)所满足的微分方程,并求该微分方程满足条件y|x=2=2/9
随机试题
与普通股筹资相比,公司债券筹资的优点是【】
心脏黏液瘤与心腔内血栓的鉴别,错误的是
现代药房管理的核心是
A.二阴煎B.滋水清肝饮C.天王补心丹D.左归丸E.黄连阿胶汤治疗阴虚火旺之郁证,应首选
不锈钢管焊前焊缝处用丙酮清洗污垢时,需在焊缝两侧分别()。
在贷款发放之前,银行进行审批决策、授信限额以及贷款定价的关键因素是()
桑代克认为学习过程是()。
下列有关医学常识不正确的是()。
乡、民族乡、镇的人民政府的每届任期为3年。()
EcosystemsinandoutofBalanceA)Itisknownthatecosystemshaveastructureconsistingofproducers(greenplantswhichusel
最新回复
(
0
)