首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)=g(x)φ(x),φ(x)在x=a连续但不可导,又g’(a)存在,则g(a)=0是F(x)在x=a可导的( )条件.
设F(x)=g(x)φ(x),φ(x)在x=a连续但不可导,又g’(a)存在,则g(a)=0是F(x)在x=a可导的( )条件.
admin
2019-02-01
52
问题
设F(x)=g(x)φ(x),φ(x)在x=a连续但不可导,又g’(a)存在,则g(a)=0是F(x)在x=a可导的( )条件.
选项
A、充分必要.
B、充分非必要.
C、必要非充分.
D、既非充分也非必要.
答案
A
解析
①因为φ’(a)不存在,所以不能对g(x)φ(x)用乘积的求导法则;②当g(a)≠0时,若F(x)在x=a可导,可对
用商的求导法则.
(Ⅰ)若g(a)=0,按定义考察
即F’(a)=g’(a)φ(a).
(Ⅱ)再用反证法证明:若F’(a)存在,则必有g(a)=0.若g(a)≠0,由商的求导法则即知φ(x)在x=a可导,与假设条件φ(a)=
在x=a处不可导矛盾.因此应选(A).
转载请注明原文地址:https://kaotiyun.com/show/Auj4777K
0
考研数学二
相关试题推荐
设u=f(x,y,z)有连续偏导数,y=y(x)和z=z(x)分别由方程exy一y=0和ez一xz=0所确定,求.
函数f(x,y,z)=一2x2在x2一y2一2z2=2条件下的极大值是___________.
由曲线y=lnx及直线x+y=e+1,y=0所围成的平面图形的面积可用二重积分表示为____________,其值等于____________.
已知f(x)的一个原函数为(1+sinx)lnx,求∫xf’(x)dx.
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设向量组(I)α1,α2,…,αs线性无关,(II)β1,β2,…,βs线性无关,且αi(i=1,2,…,s)不能由(II)β1,β2,…,βs线性表出,βi(i=1,2,…,t)不能由(I)α1,α2,…,αs线性表出,则向量组α1,α2,…,αs,β1
设A是n×m矩阵,B是m×n矩阵,其中n<m,E是n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.
已知(aχy3-y2cosχ)dχ+(1+bysinχ+3χ2y2)dy为某一函数的全微分,则a,b取值分别为【】
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
已知A,B,A+B,A-1+B-1均为n阶可逆阵,则(A-1+B-1)-1等于()
随机试题
对中国建筑史学的开创做出突出贡献的是:
按照施工图设计文件投入使用前的设计变更控制程序,因非设计单位原因引起的设计变更导致的设计费用增减应由()审核签认。
1950年5月17日,舟山群岛解放。()
材料:夫教育目的不能仅在个人。当日多在造成个人为圣为贤,而今教育之最重要目的,在谋全社会的进步。……若不骂人,不偷,不怒,不慌,不得罪于人等事,先时多为此道德高,然而此为消极的,于今不能谓此为道德。盖彼者,不过无疵而已,与社会虽有若无。今因于社会
银杏是闻名世界的三大“活化石”植物之一。()
自周秦以来,经过数千年的不断演变、丰富和完善之后,中医药膳已经成为交融传统饮食文化和传统医药文化的一个独具________的重要________,形成了一门值得重视和研究的学科。填入画横线部分最恰当的一项是:
铁钦纳在1901年出版了一部著作,其中对感知觉的研究和心理物理法进行了大量论述,并致力于将实验心理学建立成一个新的学科体系。该著作是()。(2009年)
函数d(x)=∫0xf(t-1)dt的极小值点x0是().
训练场上,陈教练在组织队员们进行跑步比赛。一组选手共五名分别是志强、林东、阿峻、虎子和明诚。比赛成绩出来了,陈教练拿着成绩单自言自语道:“志强跑得比虎子要快一点,但成绩不及林东;阿峻起跑后冲力不足,成绩最差;林东这次测试不是第一名。根据教练的叙述,可以确定
Whatexactlyisalie?Isitanythingwesaywhichweknowisuntrue?Orisitsomethingmorethanthat?Forexample,supposea
最新回复
(
0
)