设f,g和h为增函数,满足f(x)≤g(x)≤h(x),x∈R.证明: f(f(x))≤g(g(x))≤h(h(x)).

admin2022-10-31  26

问题 设f,g和h为增函数,满足f(x)≤g(x)≤h(x),x∈R.证明:
    f(f(x))≤g(g(x))≤h(h(x)).

选项

答案由f(x)≤g(x)≤h(x)和f,g,h均为增函数,可得 f(f(x))≤f(g(x))≤g(g(x))≤g(h(x))≤h(h(x)), 于是,f(f(x))≤g(g(x))≤h(h(x)).

解析
转载请注明原文地址:https://kaotiyun.com/show/AvgD777K
0

相关试题推荐
随机试题
最新回复(0)