首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在区间[a,+∞)上具有二阶导数,f(a)=0,fˊ(x)>0,f"(x)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明:a<x0<b.
已知函数f(x)在区间[a,+∞)上具有二阶导数,f(a)=0,fˊ(x)>0,f"(x)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明:a<x0<b.
admin
2020-05-09
218
问题
已知函数f(x)在区间[a,+∞)上具有二阶导数,f(a)=0,fˊ(x)>0,f"(x)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x
0
,0),证明:a<x
0
<b.
选项
答案
由题意得(b,f(b))处的切线方程为y-f(b)=fˊ(b)(x-b), 令y=0,得[*]. 因为fˊ(x)>0,所以f(x)单调递增,又因f(a)=0,则f(b)>0, 又因fˊ(b)>0,所以[*]. 又因为[*],而在[a,b]上f(x)应用拉格朗中值定理有 [*] 所以,[*] 因f"(x)>0,所以fˊ(x)单调递增,所以fˊ(b)>fˊ(ξ), 从而x
0
-a>0,即a<x
0
<b
解析
【思路探索】写出切线方程,解出与x轴交点x
0
的表示式,利用函数的单调性和拉格朗日中值定理证明不等式.
转载请注明原文地址:https://kaotiyun.com/show/B184777K
0
考研数学二
相关试题推荐
设矩阵满足A-1(E-BBTA-1)-1C-1=E,求C.
设D=计算D;
设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f’(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在内有唯一的实根.
求曲线y=ex上的最大曲率及其曲率圆方程.
设f(x)是(一∞.+∞)上的连续非负函数.且f(x)∫0xf(x一t)dt=sin1x,求f(x)在区间[0,π]上的平均值.
设.问当k为何值时,函数f(x)在其定义域内连续?为什么?
已知平面曲线Ax2+2Bxy+Cy2=1(C>0,AC-B2>0)为中心在原点的椭圆,求它的面积.
求曲线y=x2-2x、y=0、x=1、x=3所围成区域的面积S,并求该区域绕y轴旋转一周所得旋转体的体积V.
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
随机试题
巨大儿
既能生津止渴,又能消肿排脓的药物是()
关于队列研究,下列哪项是正确的
计算机最主要的工作特点是()。
2012年7月1日,北京的最高气温达到35摄氏度,该数据属于()。[2012年初级真题]
关于抽样检验的描述正确的是()。
根据以下资料,回答问题。“十五”以来,广东省的产业集群发展迅速,特色产业基地已成为广东省经济持续高速增长的新亮点。据统计,2006年广东省特色产业基地工业总产值达4930亿元,约占全省工业总产值的10%;基地的高新技术产品产值1650亿元,占全省
Readingaloudandsilentreadingaretwodifferenttypesofreadingpractice.Eachhasafunctionintheteachingofreadingand
关于运动和静止的辩证统一关系,下列选项表述正确的是()
A、Useofcomputersinbanks.B、Conveniencesbroughtaboutbycomputersinbusiness.C、Significanceofautomationincommerciale
最新回复
(
0
)