首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的秩为1,试证: (1)A可以表示成n×1矩阵和1×n矩阵的乘积; (2)存在常数μ,使得Ak=μk-1A
设n阶矩阵A的秩为1,试证: (1)A可以表示成n×1矩阵和1×n矩阵的乘积; (2)存在常数μ,使得Ak=μk-1A
admin
2019-05-11
82
问题
设n阶矩阵A的秩为1,试证:
(1)A可以表示成n×1矩阵和1×n矩阵的乘积;
(2)存在常数μ,使得A
k
=μ
k-1
A
选项
答案
(1)将A以列分块,则r(A)=r(α
1
,α
2
,…,α
n
)=1表明列向量组α
1
,α
2
,…,α
n
的极大线性无关组有一个非零向量组成,设为α
i
=[a
1
,a
2
,…,a
n
]
T
(≠0),其余列向量均可由α
i
线性表出,设为α
i
=b
j
α
i
(j=1,2,…,n,j=i时,取b
i
=1),则A=[α
1
,α
2
,…α
n
]=[b
1
α
i
,b
2
α
i
,…b
n
α
i
]=α
i
[b
1
,b
2
,…,b
n
]=[*][b
1
,b
2
,…,b
n
]. (2)记α=α
i
=[a
1
,a
2
,…,a
n
]
T
,β=[b
1
,b
2
,…,b
n
]
T
,则 A=αβ
T
,A
k
=(αβ
T
)
k
=(αβ
T
)(αβ
T
)…(αβ
T
)=α(β
T
α)(β
T
α)…(β
T
α)β
T
. 记β
T
α=a
1
b
1
+a
2
b
2
+…+a
n
b
n
=μ,则A
k
=αμ
k-1
β
T
=μ
k-1
A.
解析
转载请注明原文地址:https://kaotiyun.com/show/2wV4777K
0
考研数学二
相关试题推荐
设f(χ)在[a,b]上连续可导,f(χ)在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(χ)dχ=0,证明:(1)在(a,b)内至少存在一点ξ,使得f′(ξ)=f(ξ);(2)在(a,b)内至少存在一点η(η≠ξ),使得f〞(η)=f
计算二重积分(χ+y)dχdy,其中D:χ2+y2≤χ+y+1.
设=c(≠0),求n,c的值.
设A为三阶方阵,A的每行元素之和为5,AX=0的通解为设β=,求Aβ.
设A~B,(1)求a,b;(2)求可逆矩阵P,使得P-1AP=B.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
设A=有三个线性无关的特征向量,则a=_______.
设曲线y=y(x)位于第一象限且在原点处与x轴相切,P(x,y)为曲线上任一点,该点与原点之间的弧长为l1,点P处的切线与y轴交于点A,点A,P之间的距离为l2,又满足x(3l1+2)=2(x+1)l2,求曲线y=y(x).
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形记为D.求D的面积A;
随机试题
_____rightnow,shewouldgetthereonSunday.
“实”的病机最根本的方面是
强直性脊柱炎的病因有_______和_______。
下列叙述错误的一项是( )。
2010年3月20日,上海的甲公司与北京的乙公司签订了一份买卖合同,约定:甲公司向乙公司购买1000吨化工原料,总价款为200万元;乙公司在合同签订后1个月内交货,甲公司在验货后7日内付款。双方没有明确约定履行地点。合同签订后,甲公司以其办公用房
分页式存储管理中,完成地址转换工作的是装入程序。()
下列行为中,需要承担法律责任是
在结构化生命周期方法中,______阶段的主要任务是总体设计、详细设计。
Youshouldspendabout20minutesonQuestions14-26whicharebasedonReadingPassage2below.Youngchild
Mostchildrenwithhealthyappetitesarereadytoeatalmostanythingthatisofferedthemandachildrarelydislikesfood(1)__
最新回复
(
0
)