首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为二阶可导的奇函数,且x<0时有f”(x)>0,f’(x)<0,则当x>0时有( ).
设f(x)为二阶可导的奇函数,且x<0时有f”(x)>0,f’(x)<0,则当x>0时有( ).
admin
2019-11-25
78
问题
设f(x)为二阶可导的奇函数,且x<0时有f”(x)>0,f’(x)<0,则当x>0时有( ).
选项
A、f”(x)<0,f’(x)<0
B、.f”(x)>0,f’(x)>0
C、f”(x)>0,f’(x)<0
D、f”(x)<0,f’(x)>0
答案
A
解析
因为f(x)为二阶可导的奇函数,所以f(-x)=-f(x),f’(-x)=f’(x),f”(-x)=-f”(x),即f’(x)为偶函数,f”(x)为奇函数,故由x<0时,有f”(x)>0,f’(x)<0,得当x>0时有f”(x)<0,f’(x)<0,选A.
转载请注明原文地址:https://kaotiyun.com/show/B1D4777K
0
考研数学三
相关试题推荐
设X和Y相互独立都服从0--1分布,且P{X=1}=P{Y=1}=0.6,试证明:U=X+Y,V=X—Y不相关,但是不独立.
假设有四张同样卡片,其中三张上分别只印有a1,a2,a3,而另一张上同时印有a1,a2,a3.现在随意抽取一张卡片,令Ak={卡片上印有ak}.证明:事件A1,A2,A3两两独立但不相互独立.
设X1,X2,…,Xn为总体X的一个样本,已知EX=μ,DX=σ2<+∞,求和E(S2).
设f(x)是幂级数在(-1,1)内的和函数,求f(x)和f(x)的极值。
设x~N(0,1),x1,x2,…,x7是取自x的简单随机样本,Y=服从t(n)分布,则(c,n)为()。
设函数,其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数,求证:(Ⅰ)Fn(x)在(0,+∞)存在唯一零点xn;(Ⅱ)(1+xn)收敛;(Ⅲ)Fn(x)=+∞。
设总体X服从正态分布N(μ,σ2),X1,X2,…,X25是取自总体X的简单随机样本,为样本均值,若,则a=()。
已知总体X的概率密度f(x)=(λ>0),X1,…,Xn为来自总体X的简单随机样本,Y=X2.(I)求Y的期望EY(记EY为b);(Ⅱ)求λ的矩估计量和最大似然估计量;(Ⅲ)利用上述结果求b的最大似然估计量.
随机试题
女性,18岁,因头晕、乏力在当地医院诊断为再生障碍性贫血,近3天排鲜红全程血尿,查APTT、PT、TT时间正常、纤维蛋白原含量正常。白细胞0.9X×109/L,血红蛋白65g/L,血小板7×109/L,止血的最佳方法是
A.疏肝解郁,理气畅中B.滋养心肾C.甘润缓急,养心安神D.健脾养心,补益气血郁证之肝气郁结证,宜
内衬上皮类似于缩余釉上皮、由2~4层扁平细胞或立方细胞构成的囊肿为
下列是卵巢畸胎瘤特征性的X线表现的是
第三代头孢菌素的特点是
天美公司是济南一家从事服装生产的企业,在非同一票据交换地区的广州设立了该公司非独立核算的服装专卖店。公司与专卖店有经常性的资金行为。根据以上资料,回答下列问题:该公司的专卖店在广州市银行开立的账户应当是()。
个体动作发展的规律,遵循自上而下、由躯体中心向外围、从大肌肉动作到精细动作的发展规律。这种规律现象说明心理发展具有()。
“十三五”的核心目标是全面建成小康社会,到2020年使13多亿中国人过上全面小康生活,城乡区域协调发展、生态文明建设、社会公平正义,人均国内生产总值将跃上1.2万美元,基本跨越()
行政不作为是行政机关对于公民、法人和其他组织的符合条件的申请依法应该实施某种行为或履行某种法定职责却无正当理由拒绝履行或拖延履行的行政违法行为。根据上述定义,下列选项中行政机关行为不属于行政不作为的是()。
当代一位犹太思想家的问题困扰了罗马教廷30年:一个基督教神职人员和一个普通信徒的灵魂是否都能进天堂?一个基督徒和一个其他宗教信徒的灵魂是否都能进天堂?一个有宗教信仰的人和一个无神论者的灵魂是否都能进天堂?如果有人的灵魂不能进天堂,则“上帝之爱”就不是普适的
最新回复
(
0
)