首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为.①求A.②证明A+E是正定矩阵.
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为y12+y22,Q的第3列为.①求A.②证明A+E是正定矩阵.
admin
2019-05-11
117
问题
二次型f(x
1
,x
2
,x
3
)=X
T
AX在正交变换X=QY下化为y
1
2
+y
2
2
,Q的第3列为
.①求A.②证明A+E是正定矩阵.
选项
答案
①条件说明 Q
-1
AQ=Q
T
AQ=[*] 于是A的特征值为1,1,0,并且Q的第3列=[*](1,0,1)
T
是A的特征值为0的特征向量.记α
1
=(1,0,1)
T
,它也是A的特征值为0的特征向量. A是实对称矩阵,它的属于特征值1的特征向量都和α
1
正交,即是方程式x
1
+x
3
=0的非零解. α
2
=(1,0,-1)
T
,α
3
=(0,1,0)
T
是此方程式的基础解系,它们是A的特征值为l的两个特征向量. 建立矩阵方程 A(α
1
,α
2
,α
3
)=(0,α
2
,α
3
), 两边做转置,得 [*] 解此矩阵方程 [*] ②A+E也是实对称矩阵,特征值为2,2,1,因此是正定矩阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/B5V4777K
0
考研数学二
相关试题推荐
设f(a)=f(b)=0,∫abf2(χ)dχ=1,f′(χ)∈C[a,b].(1)求∫abχf(χ)f′(χ)dχ;(2)证明:∫abf′2(χ)dχ∫abχ2f2(χ)dχ≥.
设a1<a2<…<an,且函数f(χ)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得f(c)=f(n)(ξ).
设f(χ)在[a,b]上连续,在(a,b)内可导,且f′+(a)f′-(b)<0.证明:存在ξ∈(a,b),使得f′(ξ)=0.
设函数y=y(χ)由确定,则y=y(χ)在χ=ln2处的法线方程为_______.
曲线y=的渐近线的条数为().
设A,B都是三阶矩阵,A相似于B,且|E-A|=|E-2A|=|E-3A|=0,则|B-1+2E|=_______.
微分方程χ=y(lny-lnχ)的通解.
设A为四阶矩阵,|A*|=8,则|-3A*|=_______.
设A~B,(1)求a,b;(2)求可逆矩阵P,使得P-1AP=B.
设A为n阶非零矩阵,且存在自然数k,使得Ak=O.证明:A不可以对角化.
随机试题
典型肝脓肿在CT上的表现不包括
而议事每不合,所操之术多异故也。术:
A.桑杏汤B.杏苏散C.沙参麦冬汤D.麦门冬汤E.百合固金汤咳嗽喉痒,痰中带血,口干鼻燥,或身热,舌红少津苔薄黄,脉数。治疗应首选()
期货公司股东会的职责包括()。
基金职业道德教育的途径不包括()。
W公司2007年9月初增加没备一台,该设备原值50000元,预计可使用5年,净残值为0,采用平均年限法计提折旧。2009年年末,对该设备进行减值测试,估计其可收回金额为16500元,首次计提减值准备,并确定2010年折旧方法不变。2010年年末,W公司
成为我国首个人选的“人类口头和非物质遗产代表作”的曲目是()。
求的和.
软件设计包括软件的结构、数据接口和过程设计,其中软件的过程设计是指
期货公司在期货市场中的作用主要体现在()。
最新回复
(
0
)