首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
[2004年] 设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2021-01-19
62
问题
[2004年] 设矩阵A=
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
可利用特征值的性质即命题2.5.2.1求a,也可利用特征多项式求a. 再利用命题2.5.3.2(3)判别A是否可相似对角化,只需考查二重特征值是否有两个线性无关的特征向量. (1)求a的值.A的特征多项式为 [*] =(λ一2)(λ
2
一8λ+18+3a). 若λ
1
=λ
2
=2是特征方程的二重根,则由命题2.5.2.1得到 1+4+5=2+2+λ
3
, 则λ
3
=6.于是A的特征值为2,2,6.易求得∣A∣=6(a+6).再利用命题2.5.2.1得 λ
1
λ
2
λ
3
=2×2×6=∣A∣=6(a+6), 即 a=一2. 或者,若λ=2是特征方程的二重根,由式①知,必有2
2
一8×2+18+3a=0,解得a=一2. 若λ=2不是特征方程的二重根.设λ
0
为其二重根,则由命题2.5.2.1有2+λ
0
+λ
0
=1+4+5,即λ
0
=4.于是A的特征值为2,4,4.再用命题2.5.2.1得 2×4×4=∣A∣=6(a+6), 解得 a=一2/3. 或者,当λ=2不是特征方程的二重根时,则由式①知λ
2
一8λ+18+3a必为完全平方,即18+3a=(8/2)
2
,解得a=一2/3. (2)讨论A是否可相似对角化. 当a=一2时,A的特征值为2,2,6,特征矩阵2E—A=[*]的秩为1,故二重特征值λ=2对应的线性无关的特征向量有两个.由命题2.5.3.2(3)知,A可相似对角化. 当a=一2/3时,A的特征值为2,4,4,特征矩阵4E—A=[*]的秩为2,故二重特征值λ=4对应的线性无关的特征向量只有一个.由命题2.5.3.2(3)知,A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/BA84777K
0
考研数学二
相关试题推荐
设n阶方阵A=(α1,α2,…,αn),B=(β1,β2,…,βn),AB=(γ1,γ2,…,γn),记向量组Ⅰ:α1,α2,…,αn,Ⅱ:β1,β2,…,βn,Ⅲ:γ1,γ2,…,γn,如果向量组Ⅲ线性相关,则()
[*]
设A是m×n矩阵,r(A)=n,则下列结论不正确的是().
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_________.
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T求方程组的通解。
设y=y(x)是由y3+(x+1)y+x2=0及y(0)=0所确定,则=___________.
设η为非零向量,A=,η为方程组AX=0的解,则a=_______,方程组的通解为_______.
A、 B、 C、 D、 D如图,若区域D表示为X型时,D={(x,y)|0≤x≤1,1-原式=;若区域D表示为Y型时,D1={(x,y)|0≤x≤,0≤y≤1}.D2={(x,y)|0≤x≤2-y,1
∫ex(1+sinx)/(1+cosx)dx=________.
随机试题
美国:墨西哥
患者于某,女性,58岁。两年前曾患“中风”,经治已愈,之后逐渐出现善忘呆滞,言语模糊不清,行为古怪孤僻,时哭时笑,诊见两目黯晦,舌黯,脉细涩。若病人日久兼气血不足应
第一个用于临床的磺酰脲类降糖药结构上属于低聚糖药物,可竞争性地抑制葡萄糖苷酶
大中型药品零售企业的质量负责人药品零售连锁门店的质量管理负责人
在项目生命周期中,融资服务需要解决的问题涉及()
某项目总投资为2000万元,分3年均衡发放,第一年投资500万元,第二年投资1000万元,第三年投资500万元,建设期内年利率为10%,则建设期贷款利息共计( )万元。
根据下面材料,回答下列题目:假定1年期零息债券面值为100元,现价为94.34元,而2年期零息债券现价为84.99元。某投资者考虑购买2年期每年付息的债券,面值为100元,年息票利率为12%。2年期零息债券的到期收益率是______;2年期有息债券的
下列不属于操作风险损失事件收集工作应坚持的原则的是()。
体育锻炼课是我国中小学最普遍、最有保障的一种课余体育活动形式。
What%theword"saying"(Line1,Para1)inthispassagemean?Whichindustrydoeshisfriendengagein?
最新回复
(
0
)