首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2004年] 设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
[2004年] 设矩阵A=的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
admin
2021-01-19
41
问题
[2004年] 设矩阵A=
的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化.
选项
答案
可利用特征值的性质即命题2.5.2.1求a,也可利用特征多项式求a. 再利用命题2.5.3.2(3)判别A是否可相似对角化,只需考查二重特征值是否有两个线性无关的特征向量. (1)求a的值.A的特征多项式为 [*] =(λ一2)(λ
2
一8λ+18+3a). 若λ
1
=λ
2
=2是特征方程的二重根,则由命题2.5.2.1得到 1+4+5=2+2+λ
3
, 则λ
3
=6.于是A的特征值为2,2,6.易求得∣A∣=6(a+6).再利用命题2.5.2.1得 λ
1
λ
2
λ
3
=2×2×6=∣A∣=6(a+6), 即 a=一2. 或者,若λ=2是特征方程的二重根,由式①知,必有2
2
一8×2+18+3a=0,解得a=一2. 若λ=2不是特征方程的二重根.设λ
0
为其二重根,则由命题2.5.2.1有2+λ
0
+λ
0
=1+4+5,即λ
0
=4.于是A的特征值为2,4,4.再用命题2.5.2.1得 2×4×4=∣A∣=6(a+6), 解得 a=一2/3. 或者,当λ=2不是特征方程的二重根时,则由式①知λ
2
一8λ+18+3a必为完全平方,即18+3a=(8/2)
2
,解得a=一2/3. (2)讨论A是否可相似对角化. 当a=一2时,A的特征值为2,2,6,特征矩阵2E—A=[*]的秩为1,故二重特征值λ=2对应的线性无关的特征向量有两个.由命题2.5.3.2(3)知,A可相似对角化. 当a=一2/3时,A的特征值为2,4,4,特征矩阵4E—A=[*]的秩为2,故二重特征值λ=4对应的线性无关的特征向量只有一个.由命题2.5.3.2(3)知,A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/BA84777K
0
考研数学二
相关试题推荐
[*]
[*]
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_________.
设平面图形A由χ2+y2≤2χ及y≥χ、所确定,则A绕商线χ=-2旋转一周所得旋转体的体积公式为().
设y=y(x)是由y3+(x+1)y+x2=0及y(0)=0所确定,则=___________.
积分∫02dx∫x2e—y2dy=______。
以yOz坐标面上的平面曲线段y=f(z)(0≤z≤h)绕z轴旋转所构成的旋转曲面和xOy坐标面围成一个无盖容器,已知它的底面积为l6πcm3,如果以3cm3/s的速率把水注入容器,水表面的面积以πcm3/s增大,试求曲线y=f(z)的方程.
设函数F(x)=max{f1(x),f2(x))的定义域为(-1,1),其中f1(x)=x+1,f2(x)=(x+1)2,试讨论F(x)在x=0处的连续性与可导性.
(05年)设y=(1+sinx)x,则dy|x=π=_____.
(1995年)求函数f(χ)=(2-t)e-tdt的最大值和最小值.
随机试题
稳定型股骨颈骨折是
通过阅读患者的病例、分析病史及其健康影响因素来评估患者健康需求的方法是
传染性软疣治宜:丝状疣治宜:
根据《药品管理法》及《实施条例》的规定,个人设置的门诊部、诊所等医疗机构不得()。
下列价格中不属于到岸价的是()
建设项目业主进行项目管理必须遵循的首要和基本原则是()。
应在账户借方核算的是()。
下列不属于反垄断执法机构可以采取的措施的是()。
行纪人与第三人订立合同的,第三人不履行义务致使委托人受到损害的,第三人应当承担损害赔偿责任,但行纪人与委托人另有约定的除外。()
KarlVonLinne(orLinnaeus,asheiswidelyknown)wasaSwedishbiologistwhodevisedthesystemofLatinisedscientificnames
最新回复
(
0
)