首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个线性方程组: 其中向量b=(b1,b2,…,bm)T≠0.证明I方程组(I)有解的充分必要条件,是(Ⅱ)的每一解y=(y1,y2,…,ym)T都满足方程b1y1+b2y2+…+bkym=0.
设有两个线性方程组: 其中向量b=(b1,b2,…,bm)T≠0.证明I方程组(I)有解的充分必要条件,是(Ⅱ)的每一解y=(y1,y2,…,ym)T都满足方程b1y1+b2y2+…+bkym=0.
admin
2016-04-11
71
问题
设有两个线性方程组:
其中向量b=(b
1
,b
2
,…,b
m
)
T
≠0.证明I方程组(I)有解的充分必要条件,是(Ⅱ)的每一解y=(y
1
,y
2
,…,y
m
)
T
都满足方程b
1
y
1
+b
2
y
2
+…+b
k
y
m
=0.
选项
答案
记A=(a
ij
)
m×n
,x=(x
1
,x
2
,…,x
n
)
T
,y=(y
1
,y
2
,…,y
m
)
T
,则方程组(I)的矩阵形式为Ax=b,方程组(Ⅱ)的矩阵形式为A
T
y=0,方程[*]b
i
y
i
=0的矩阵形式为b
T
y=0.必要性:设方程组(I)有解x,y为(II)的任一解,则b
T
y=(Ax)
T
y=x
T
(A
T
y)=x
T
0=0,故(II)的任一解y都满足方程b
T
y=0.充分性:在充分性条件下,两个齐次线性方程组[*]=0与A
T
y=0同解,故其系数矩阵的秩相同,从而系数矩阵的转置矩阵的秩也相同,即r(A)=r(A|b),由有解判定定理知方程组(I)有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/BNw4777K
0
考研数学一
相关试题推荐
用变量代换x=lnt将方程化为y关于t的方程,并求微分方程的通解。
设有微分方程y’-2y=ψ(x),其中ψ(x)=求在(-∞,+∞)内连续的函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设f(x)在[a,b]上连续可导,且f(a)=0,证明:∫abf2(x)dx≤∫ab[f’(x)]2dx.
设有三个线性无关的特征向量,求a及An.
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an为常数,且对一切x有|f(x)|≤|ex-1|,证明|a1+2a2+…+nan|≤1.
设k为常数,方程kx-+1=0在(0,+∞)内恰有一根,求k的取值范围。
由题设,积分区域D如右图阴影所示,其在D1为辅助性半圆形区域,[*]
(I)设M和m分别是连续函数f(x)在区间[a,b](b>a)上的最大值和最[*]
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=().
某保险公司设置某一险种,规定每一保单有效期为一年,有效理赔一次,每个保单收取保费500元,理赔额为40000元.据估计每个保单索赔概率为0.01,设公司共卖出这种保单8000个,求该公司在该险种上获得的平均利润.
随机试题
关于裂解炉的节能措施,下列说法正确的是()。
下列句中,加着横线的词解释不正确的一句是【】
关于焦点叙述错误的是
产褥感染之热入营血证的治法是
霍乱的临床分型中,正确的是
为形成新的比较优势,实现局部领域的突破和跨越式发展,我国要有选择、有重点地加快发展()产业。
编制和应用施工定额之所以有利于推广先进技术是因为()。
根据《危险性较大的分部分项工程安全管理办法》,下列分部分项工程中,需要专家论证的有()。
BrennanStateUniversityAlumniUpdateCherylHenry(BAandMAincommunications)haswrittenseveralarticlesthatwillbe(141
Whatmakesthemurderofsixpeopleatthetemplecatchpeople’sattention?
最新回复
(
0
)